Plastic scintillator
Used for Neutron-gamma discrimination

Neutron/gamma discrimination detector by PSD technique

DRS-4 board, PSI (Fast-ADC/FPGA-based)
- 0.7 GSPS – 5 GSPS
- 4 input channels
- USB 2.0 interface for data readout.

Pulse Shape Discrimination (PSD) technique

\[Q_{\text{ratio}} = \frac{\text{Tail charge}, Q_{\text{tail}}}{\text{Total charge}, Q_{\text{total}}} \]

Mechanism of fast neutron interaction with H, C.

Cf-252 source

Conventional method

Figure of Merit (FOM)

Confidence level of neutron/gamma discrimination (unit, \(\sigma \))

Conventional method

New method
A new method of PSD technique on charge integration ratio to improve neutron/gamma discrimination in low-energy region for EJ-299-33 plastic scintillation detector

Vo Hong Hai1, Tran Cong Thanh2, Lu Thanh Duong2, Tran Kim Toan2, Nguyen Quoc Long2, Masahiro Nishida3, Bui Van Khanh2

1Department of Nuclear Physics, University of Science, Vietnam National University Hanoi, Hanoi, Vietnam.
2Hanoi University, Hanoi, Vietnam.

Contact Email: xvbh@hust.edu.vn

Introduction

Charge integration ratio Q_{int} method in Pulse Shape Discrimination (PSD) technique has been widely used to discriminate between fast neutrons and gammas in organic scintillation detectors.

Problem: In low-energy regime of less than hundred keV, Q_{int} of scintillation detectors has highly energy dependence. This leads to Figure of Merit (FOM) is usually characterizing for neutron/gamma separation, which is low.

Solution: We introduce a new method of PSD technique on charge integration ratio to improve the FOM particularly in the low-energy regime threshold. The technique of this new method is to monitor Q_{int} of neutron signals on the are constant, or independently, neutron energy. By applying the new PSD technique on C252 gamma ray, we conclude that the FOM is increased.

Experimental details

- EJ-299-33 plastic scintillation detector is placed in front of a C252 source which is fast neutron source. It is excited by fast neutron with energies from 200 keV to 1 MeV.

- Charge of the PSD is measured with a DRA3420 from the ADP44 (ion chamber) for particle discrimination.

- Voltage calibration is carried out before measurement.

- Energy calibration

Charge integration ratio method, Q_{int}

- To discriminate neutron and gamma is defined as:

$$Q_{int} = \frac{Q_{fast} - Q_{0}}{Q_{0}}$$

where Q_{fast} is fast charge on ion chamber, Q_{0} is the charge on the ion chamber of the plate, respectively.

Figure of merit (FOM)

Quantities for neutron/gamma discrimination N_{X} is a number of discriminator by the figure of merit (FOM), FOM is defined in the following:

$$FOM = \frac{N_{X}}{N_{X} + N_{G}}$$

where N_{X} is number of neutron events, N_{G} is number of gamma events.

Conventional method of Q_{int}

- Q_{int} is calculated for neutron and gamma.

New method of Q_{int}

- Q_{int} is calculated for neutron and gamma.

Results and discussion: Neutron/gamma discrimination

- FOM of the new method (red point) describes better performance in comparison with conventional method (blue point).

- At low energy threshold of 100 keV, with the new method, FOM reaches 1.

Conclusions

- FOM of the new introduced method of PSD technique on charge integration ratio for the EJ-299-33 plastic scintillation detector is enhanced significantly in comparison with FOM of the conventional method.

- In the new method, peaks of Q_{int} distribution for neutron signals have energy independence. It promises to be a good performance for the neutron detector development by using digitizer technology.

References

Acknowledgement

The authors would like to express thanks to the Nuclear Research Institute of Da Lat, Vietnam, for the use of C252 gamma ray source.