High Bandwidth Data Acquisition (HBDQ) MTCA.4.1 Platform

Let Your Application benefit

www.nateurope.com
About **N.A.T.**
Network and Automation Technology

- Founded in 1990, privately owned
- Hard- and Software design and manufacturing
- Focus on *innovation in communication*
- International and worldwide operations
- Headquarters

 Konrad-Zuse-Platz 9
 53227 Bonn
 Germany

- **MTCA.4 Instructors:**
 - Dipl. Ing. Vollrath Dirksen, vollrath@nateurope.com
 - Dipl. Phys. Heiko Körte, heiko@nateurope.com
About **N.A.T.**

Core competences and capabilities

- **Functions:**
 - Interfaces for LAN, WAN/MAN, RAN, GPIO
 - Communication and processing boards hosting GPU, NPU, DSP, FPGA
 - System controllers and intelligent switches for SRIO, PCIE, 1/10/40GbE
 - Carriers, converters, adapters and extenders

- **Form factors and standards:**
 - VME, cPCI, PCI/PCIe, PMC, XMC, FMC, AMC, MTCA, custom

- **Technologies:**
 - FPGA: Altera, Xilinx, Lattice
 - DSP: Analog Devices, Texas Instruments, Octasic
 - CPUs: NXP, ARM, MicroBlaze, NIOS
 - Switches (Broadcom, IDT, PLX, Fulcrum, Vitesse)

- **Software/firmware:**
 - Board Support Packages and host drivers: Linux, OK-1; OSE, vxWorks, QNX on request
 - Protocol stacks: telecom (ISDN, SS7, mobile), IP related, custom
 - Applications and APIs

NX on request
Agenda

- Motivation
- Building Blocks: Chassis, MCH, Power, Timing
- HBDQ: High Bandwidth Data Acquisition Platform based on MTCA.4.1 standard
- JTAG debugging multiple FPGAs
- Summary
1U, 2 single, mid/full-size Slots or 1 double, mid/full-size Slot
Motivation for
High Bandwidth Data Acquisition Platform

- IO move from PCIe-Gen1 to -Gen2 to nowadays -**Gen3**
 - SIS8300-KU: new ADC/DAC using Ultrascale FPGAs, 4 lanes PCIe-Gen3
- AMC CPU become bottleneck
 - already offer 8 PCIe lanes, but can only use 4 lanes in standard MTCA.4 crates
- Technology Evolution
 - AMC-CPU do not follow **Intel-CPU technology quick enough** (Intel Gen1, Gen3, Gen6)
 - Upcoming request for using beside FPGAs oder **GP-GPU** (general purpose graphic processing units) -> AMC-GPU or NVIDIA-PCIe cards
 - Latest COMexpress modules require **more than 30 Watts**
- Latest requirements (FAIR, ESS, ...)
 - less slots but distributed IO, 10G Ethernet too long latency
 - Redundancy on crate level, not board level

- **Goal**
 - Take MTCA.4 systems to the next level of performance taking advantage of the upcoming MTCA.4.1 standard -> HBDQ Platform
About N.A.T.
Markets and Applications

- Automation
- Communication
- Defense & Aerospace
- Energy
- Industrial Control
- Infotainment
- Medical
- Test & Measurement
- Transportation
Agenda

• Motivation
• **Building Blocks: Chassis, MCH, Power, Timing**
• HBDQ: High Bandwidth Data Acquisition Platform based on MTCA.4.1 standard
• JTAG debugging multiple FPGAs
• Summary
NATIVE Overview

<table>
<thead>
<tr>
<th>Standard</th>
<th>Name</th>
<th>Size</th>
<th>AMC Slots</th>
<th>µRTM Slots</th>
<th>MCH Slots</th>
<th>Cooling Unit Slots</th>
<th>Power module Slots</th>
<th>JSM</th>
<th>Fat-Pipe Size</th>
<th>Comment</th>
<th>Dust Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NATIVE-mini</td>
<td>1U</td>
<td>2 sm or 2 sf or 1 df</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>x8</td>
<td>eMCH, Cooling unit, power module</td>
<td>1</td>
</tr>
<tr>
<td>MTCA.0</td>
<td>NATIVE-C1</td>
<td>19", 1U</td>
<td>6 sm or 3 sf or 2 sm + 4dm</td>
<td>-</td>
<td>1 sf</td>
<td>2</td>
<td>1 sf</td>
<td>soon</td>
<td>x8</td>
<td>redundant x4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NATIVE-C2</td>
<td>19", 2U</td>
<td>12 sm or 6 sf or 4 sm + 4dm or ...</td>
<td>-</td>
<td>2 sf</td>
<td>2</td>
<td>2 sf</td>
<td>soon</td>
<td>redundant x4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NATIVE-C5</td>
<td>5U</td>
<td>6 dm + 1 df or 7 dm or single/double mix</td>
<td>-</td>
<td>1 df</td>
<td>1</td>
<td>1 df</td>
<td>no</td>
<td>x4</td>
<td>Cooling Unit, Power Module</td>
<td>1</td>
</tr>
<tr>
<td>MTCA.1</td>
<td>NATIVE-SX</td>
<td>3U</td>
<td>3 sm + 2 sf</td>
<td>-</td>
<td>1 sf</td>
<td>-</td>
<td>-</td>
<td></td>
<td>x4</td>
<td>redundant x4 direct replacement for IPC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NATIVE-IPC</td>
<td>19", 4U</td>
<td>12 sm (pluggable from Rear)</td>
<td>-</td>
<td>2 sf</td>
<td>1</td>
<td>2 sdf</td>
<td></td>
<td>x4</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>MTCA.4</td>
<td>NATIVE-R2</td>
<td>2U</td>
<td>5 dm + 1 df</td>
<td>4 dm + 1 dm(if no JSM)</td>
<td>1 df + RTM</td>
<td>1</td>
<td>1 df</td>
<td>yes</td>
<td>x8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NATIVE-R5</td>
<td>5U</td>
<td>6 dm + 1 df or 7 dm or single/double mix</td>
<td>6 dm + 1 df or 7 dm</td>
<td>1 df + RTM</td>
<td>1</td>
<td>1 df</td>
<td>no</td>
<td>x4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NATIVE-R9</td>
<td>19", 9U</td>
<td>12 dm or 6 df or single/double mix</td>
<td>12 dm or 6 df or combination</td>
<td>2 df + 2RTM</td>
<td>2</td>
<td>4 df or 2 ddf</td>
<td>yes</td>
<td>redundant x4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MTCA.2</td>
<td></td>
</tr>
<tr>
<td>MTCA.3</td>
<td></td>
</tr>
</tbody>
</table>
Power Modules for MTCA.0 and MTCA.4

<table>
<thead>
<tr>
<th>INPUT</th>
<th>PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT-PM-DC420 DC -48V</td>
<td>420W</td>
</tr>
<tr>
<td>NAT-PM-DC840 DC -48V</td>
<td>840W</td>
</tr>
<tr>
<td>NAT-PM-AC600 AC 110-265</td>
<td>600W</td>
</tr>
<tr>
<td>NAT-PM-AC600D AC 110-265V</td>
<td>600W (double width)</td>
</tr>
<tr>
<td>NAT-PM-AC1000 AC 110-265V</td>
<td>1000W (double width)</td>
</tr>
<tr>
<td>NAT-RPM-PSC AC 110-265V</td>
<td>600W (double width)</td>
</tr>
<tr>
<td>NAT-PM-DC600LV DC 24V</td>
<td>ad: 300W/600W</td>
</tr>
<tr>
<td>NAT-RPM-PSC AC 110-265V</td>
<td>+/-VV (variable Voltages)</td>
</tr>
</tbody>
</table>

![Image of power modules]
NAT-MCH-PHYS80

- Low Cost (1GbE)
- Telecom Clock and FCLK
- Serial Rapid I/O Gen 2 + FPGA
- Serial Rapid I/O Gen 2
- 10GbE (XAUI)
- PCI Express Gen 3
- Physics Clock + SSD
- Ruggedized
New MCH-RTM
NAT-MCH-RTM-BM-FPGA: Front Side

Multiple COMexpress-CPU-Modules

RTM Power connector
RTM Control&Data connector
Second Zone3 connector
New MCH-RTM
NAT-MCH-RTM-BM-FPGA: Block Diagram
NAMC-psTimer
Synchronisation simplified
Need of Timing/Triggering Hardware
Installation Example XFEL
Agenda

- Motivation
- Building Blocks: Chassis, MCH, Power, Timing
- **HBDQ: High Bandwidth Data Acquisition Platform based on MTCA.4.1 standard**
- JTAG debugging multiple FPGAs
- Summary
Put things into NATIVE-R2
6 AMCs, 5 µRTMs, PM, JSM, MCH, MCH-RTM

- 2U MTCA.4 chassis for AMCs and µRTMs and JTAG Switch Module

AMCs with up to 3 sub-modules or big heatsinks

1x Fieldbus e.g. EtherCAT
4x USB3.0 Dev. e.g. Cameras
2x Displays (4k)
MTCA.4.1 Defines
µRTM Backplane, Zone-2 Connector, Zone-3 Classes RPM, eRTMs, MCH-RTM, x16 Fat-Pipe
NATIVE-R2
Data stream from DSP/FPGA or FPGA/GPU to Displays

μRTM

CPU

ADC

FPGA

FPGA

DSP+FPGA

FPGA

FPGA

DIO

CPU

MCH

FPGA

GPU

DSP+FPGA

Switch

DSP+FPGA

x4 optical PCIe or x8 or x16

MultiCore CPUs with GPU NVIDIA Graphic Card with 100s of Cores

DISPLAY
3 + 4

local CPU

external CPU+GPU

DISPLAY
1 + 2 or more

Input

PCIe Gen3

PCIe Gen3

PCIe Gen3

PCIe Gen3
NATIVE-R2
Trigger and Clocks combined with High Bandwidth

1x Ref-Clock-In
1x or 2x Trigger-In
3x to 12x Clock-Out
3x to 12x Trigger-Out
Special IO

MultiCore CPUs with GPU
NVIDIA Graphic Card with 100s of Cores
NATIVE-R2
Low Latency Cascading of Systems
NATIVE-R2
Clustering, Uplink, Cascading of systems

Optical PCIe Uplink
16 PCIex Lanes

MCH-RTM:
Local Root Complex
16 PCIex lanes

PCI Express Switch
128 Gb/s

AMC PCIe lanes
x1
x4
2 x4
1 x8
PCIe Gen1, 2 or 3

AMC6

µRTM1
AMC1

µRTM2
AMC2

µRTM3
AMC3

µRTM4
AMC4

µRTM5
AMC5

2.5 – 32 Gb/s
or 64 Gb/s
JTAG Switch Module by N.A.T.
NAT-JSM: compact, versatile, flexible
Agenda

- Motivation
- Building Blocks: Chassis, MCH, Power, Timing
- HBDQ: High Bandwidth Data Acquisition Platform based on MTCA.4.1 standard
- JTAG debugging multiple FPGAs
- Summary
Summary
High Bandwidth Data Acquisition Platform

IO move from PCIe-Gen1 to -Gen2 to nowadays -Gen3
SIS8300-KU: new ADC/DAC using Ultrascale FPGAs, 4 lanes PCIe-Gen3
AMC CPU become bottleneck
already offer 8 PCIe lanes, but can only use 4 lanes in standard MTCA.4 crates

Technology Evolution
AMC-CPU do not follow Intel-CPU technology quick enough (Intel Gen1, Gen3, Gen6)
Upcoming request for using besides FPGAs or GP-GPU (general purpose graphic processing units) -> AMC-GPU or NVIDIA-PCIe cards
Latest COMexpress modules require more than 30 Watts

Latest requirements (FAIR, ESS, ...)
less slots but distributed IO, 10G Ethernet too long latency
Redundancy on crate level, not board level

Goal
Take MTCA.4 systems to the next level of performance taking advantage of the upcoming MTCA.4.1 standard -> HBDQ Platform