Introduction

MTCA Workshop
IEEE Real Time 2018
Williamsburg VA June 9, 2018

Ray Larsen
SLAC National Accelerator Laboratory
for the xTCA for Physics Collaboration
History of xTCA Physics Workshops

• Physics MTCA Workshops
 – 2007 – RT FermiLab USA, PICMG expert tutorials
 – 2008
 – 2009 – RT IHEP Beijing CN, xTCA Committees Formed
 – 2010 – RT Lisbon Portugal
 – 2011 –
 – 2012 – RT Berkeley USA
 – 2013 –
 – 2014 –RT Nara Japan
 – 2015 –
 – 2016 – RT Padua Italy
 – 2017 -
 – 2018 – RT 2018 Williamsburg USA

DESY MTCAWS
DEC. 2012-2017
2018=7th Annual
CERN Interest Group
Physics Standards History

• Standards driven by new innovations for economic, performance advantages

• Timeline
 – 50 Years ago, ~1965, NIM, Nuclear Instrument Module
 – 40 Years ago, ~1975, CAMAC Data bus modules
 – 30 Years ago, ~1985, FASTBUS 10X BW bidirectional
 – 14 Years ago, ~2004, ATCA, MTCA announced by PICMG
 • Multi-GHz serial technology backplane
 • Redundancy for 0.99999 Availability at Shelf (Crate) level
 • Intelligent Platform Management Interface (IPMI)
Physics Standards Timeline

- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010
- 2020

- NIM '65
- CAMAC '75
- FASTBUS '85
- ATCA '04
- ATCA 3.8, MTCA.4 '10, 11
- MTCA.4.1, SW HP, SHAPI '16
- MTCA.4.1, SW SDM, SPM '17

xTCA WG
New Standards & SW Guidelines 2009-17

IEEE NPSS Real Time e2018 R. Larsen
PICMG xTCA for Physics 2002-16

- 2002 ATCA Announced by PICMG for Telcom
- 2004-06 ATCA with μTCA announced
- 2004-11 NSS-MIC paper advocating ATCA for ILC Controls
- 2005-07 Snowmass Physics controls papers DESY, SLAC
- 2005-11 Gromitz controls presentations DESY, SLAC
- 2007-06 First xTCA workshop FNAL
- 2009-06 xTCA for Physics WG’s Announced IHEP IEEE Real Time
- 2011-07 MTCA.4 with RTM Released
- 2016-11 MTCA.4.1 Released; submitted Hot Plug, SHAPI Guidelines
- 2017 -03 Last of 4 SW Guidelines completed
MTCA.4 released July 2011

- MTCA.0 Extensions => MTCA.4 for Physics

Extension Features:
- AMC-RTM connector standardized with E-Keying, JTAG, IPMI Management & Power from AMC to RTM
- Low-jitter clock lines, point-to-point connections for vector, interlock summing
- RTM added hot-swap feature same as AMC
Enhancements MTCA.4 => MTCA.4.1

- 1. Auxiliary Backplane
- 2. Rear Power Modules (RPMs)
- 3. MCH-RTM
- 4. Boards & Protective Covers
- 5. Applications Classes of RTMs
MTCA.4.1 Final Released 2016

- **Name MTCA.4.1 Enhancements suggested by PICMG**
- **Approved, adopted, in printing November 2016**
Software Guidelines Completed

- **Standard Device Model (SDM)**: Dec. 2014
- **Standard Hot Plug Procedure (SHPP)**: Nov. 2014
- **Standard Hardware API (SHAPI)**: Mar. 2016
- **Standard Process Model (SPM)**: Dec. 2017

IEEE NPSS Real Time e2018 R. Larsen
Final Steps

• PICMG HW, SW Committees
 – PICMG Policy: Dissolve after Statement of Work complete; renew if new standards work needed; Physics Coordinating Committee can continue to correct, update or renew in future.
 – HWG has to be reformed if undertakes new SOW (re-open to all PICMG Members to participate)
 – SWG will remain active to oversee maintenance issues only until new SOW undertaken (same as HW)
 – Finished Guidelines reside in DESY GitHub repository for community-wide use (contact DESYLab)

• Special thanks to all WG Members and their supporting lab-industry institutions
 – To the entire team; see list of key contributors on following page.
Key Contributors

<table>
<thead>
<tr>
<th>Hardware WG</th>
<th>Software WG</th>
<th>Laboratories</th>
<th>Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, Bellur</td>
<td>A. Lowell</td>
<td>DESY</td>
<td>Triple Ring</td>
</tr>
<tr>
<td>K. Czuba</td>
<td>B. Fernandes</td>
<td>XFEL</td>
<td>Pentair Schroff</td>
</tr>
<tr>
<td>V. Dirksen</td>
<td>P. Gessler</td>
<td>IHEP</td>
<td>Elma</td>
</tr>
<tr>
<td>N. Koll</td>
<td>B. Goncalves</td>
<td>ITER</td>
<td>NAT</td>
</tr>
<tr>
<td>T. Lesniak</td>
<td>M. Killenberg</td>
<td>SLAC</td>
<td>TEWS</td>
</tr>
<tr>
<td>Z-A. Liu</td>
<td>D. Makowski</td>
<td>IPFN Lisbon</td>
<td>PowerBridge</td>
</tr>
<tr>
<td>F. Ludwig</td>
<td>M. Correia</td>
<td>IN2P3 Saclay</td>
<td>VadaTech</td>
</tr>
<tr>
<td>D. Makowski</td>
<td>M. Munroe</td>
<td>ESSB Portugal</td>
<td></td>
</tr>
<tr>
<td>D. Mann</td>
<td>L. Petrosyan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Rehlich</td>
<td>P. Fortuna Carvalho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Thompson</td>
<td>K. Rehlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Waltz</td>
<td>S. Simrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Xu</td>
<td>J. Sousa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Young</td>
<td>T. Straumann</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. Thompson</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Williams</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IEEE NPSS Real Time e2018 R. Larsen 11