HIE-Isolde Low Level RF proposal

P. Baudrenghien

BE/RF/FB

Outline

- 1. New LLRF developments in the BE/RF/FB section
- 2. LHC LLRF
- 3. Linac4 LLRF and SPL studies
- 4. HIE-Isolde LLRF *proposal*

1. BE/RF/FB section

LLRF in the BE/RF/FB section

- RF operation of six machines
 - PSB, PS, SPS, LHC
 - LEIR
 - AD
- Fourteen staff members
- Ongoing LLRF projects
 - LHC re-start
 - PSB
 - Linac4
 - SPL studies

2. LHC LLRF

LHC LLRF

- Super Conducting Standing Wave Cavities, single-cell, R/Q = 45 ohms, 6 MV/m nominal
- Movable Main Coupler 10000 < Q_I < 180000
- Mechanical Tuner range = 100 kHz
- 1 klystron per cavity
 - 330 kW max (58 kV, 8.4 A)
 - In operation < 200 kW CW</p>
- 0.5 A DC current

Hadron collider with very high beam current.

Challenges: Impedance reduction (stability) and low noise (lifetime)

LHC Cavity Controller Loops

- A Tuner Loop: Minimizes klystron current. (Half detuning)
- An RF Feedback Loop: Reduces the cavity impedance at the fundamental (by 20 linear for Q=20000, by 180 at Q = 180000). Precision of RF voltage, transient beam loading and longitudinal stability
- A Klystron Polar Loop: Compensates for the klystron gain/phase changes. (HT drifts and ripples).
- A 1-T Feedback: Adds factor 10 reduction on the revolution frequency side-bands. (Transient beam loading + longitudinal stability)
- A Conditioning System monitoring the Main Coupler Vacuum while feeding the Line with Frequency Modulated bursts of RF power of increasing amplitude
- A Klystron Drive Limiter that prevents from driving the klystron over the saturation limit during loop transients.

Features

- RF feedback implemented in a low group delay I/Q Loop
- Extensive Diagnostics:
 - Important signals (~30/cavity) are stored for monitoring
 - Two sets of memory
 - Post-Mortem memory: Free-running, stopped by specific machine-wide postmortem trigger, fixed sampling rate. Meant to correlate acquisitions after a fault.
 - Observation: Piloted by operator that sets sample rate and triggers the acquisition. Meant for monitoring during operation.
 - Built-in Network Analyzer
 - Excitation memories to inject signals (step, sine-wave, white noise,...)
 coupled with observation memories implement a Signal Analyzer
- Fully remote controlled

Implementation

Cavity Controller VME crate ~

Antenna calibration and 100 mW predriver

RF cable splitting

LHC LLRF VME Tuner Crate

LHC LLRF

LHC LLRF Faraday Cage

Noise reduction with RF feedback

Open Loop 10 mV/div -> **5 dg pk-pk**, 5 ms/div (File PhaseMeasOpen 14 March 2007)

Closed Loop 2 mV/div -> **0.1 dg pk-pk**, 5 ms/div (PhaseMeasAtt 0A 14 March 2007)

- Phase noise Vcav vs ref.
- SM18 test stand, March 2007
- Calibration: 10 mV/dg @ 400 MHz
- Q=60000, 1 MVacc, 35 kW

Open Loop vs Close Loop. 50 dB reduction @ 600 Hz (File PhaseNoise3 15 March 2007)

- Power Spectral Density of cavity phase noise (Vcav vs Ref) with and without RF feedback
- ZLW1 mixer and Spectrum Analyzer
- 300 mV/dg @ 400 MHz
- 50 dB reduction of 600 Hz line

LHC LLRF Developments

- LLRF design started in 2003. Completed by 2008+.
- ~ 4 man.year per year over the seven years period
- Volume:
 - 20 racks in UX45 plus 15 racks in SR4
 - ~ 50 special LLRF VME crates plus 5 standard VME crates
 - □ ~ 500 NIM/VME cards of 36 different makes
- Much expertise developed
 - Signal Processing in FPGA (CIC filters, CORDIC, I/Q Demodulator)
 - Synchronization problems in multi-clocks systems
 - Mixed signals PCBs: RF front-end and digital part. Grounding, decoupling, linear/switched mode P.S.
 - Design flow/tools: Visual Elite (FPGA) then Cadence (Schematics/Layout)
 - Use of on-board diagnostic memories plus excitation buffers

3. Linac4 LLRF

Linac4 LLRF

- H- Linac injecting 160 MeV beam in the PSB
- Replaces Linac 2 (designed 1975)
- Commissioning in 2013. From start-up 2014 source of all proton beams
- ~80 m long
- Normal Conducting structures (Q_L from 6k to 40k) at 352.2 MHz
- 2 Hz rep rate
- 40 mA Linac current
- Beam Pulse length: 80 400 μs nominal, 1 ms max
- Wide variety of structures: re-entrant cavities (buncher), RFQ, DTL, CCDTL, PIM
- LLRF design started in 2009.
- Target: Field stabilization within 1 deg and 1 %

Moderate intensity pulsed NC Linac.

Challenge: Transient Beam Loading (chopping)

Lay-out

Linac 4 lay-out.

Functionalities. For each tank

- A Tuner Loop to keep the structure on resonance
- An RF Feedback, and a Feedforward (Iterative Learning) to keep the accelerating voltage at the desired value in the presence of beam transient
- A Klystron Polar Loop to compensate the variation of klystron gain and phase shift caused by High Voltage (HV) supply fluctuations and droop
- A Conditioning System monitoring the Cavity Vacuum/Reflected Power while feeding the Line with Frequency Modulated bursts of RF power of increasing amplitude
- A Klystron Drive Limiter that prevents from driving the klystron over the saturation limit during loop transients.

Similar – but somewhat simpler – than the LHC LLRF (slide 7)

Developments

- Same crate as LHC LLRF but reassigned lines on J2 backplane
- Same design flow: Visual Elite for FPGAs, Cadence
- Re-use FPGA blocks: I/Q demod, CIC, Cordic
- But... re-do all VME modules (simplifications, obsolete components,...)

		Α	В	C			
1 Timings (12x)	Cycle Start	*	0	•	RF ON* AnalyzeTrig*		
rinings (12X)	Beam In*	•		•	RF OFF* Post-mortem Trig*		
BpTA3* / Beam Out				•	Beam On wn* Observation Trig*		
4	BpTA4*	•	0	•	Beam Off wn*Cold reset*		
5		•	•	•			
Digital data		•	lacktriangle	lacktriangle	See page 2		
(3x6)		•	•	•			
10		•	•	•			
Intlk/Alarm (3x)		•	0	•	ConfigDone		
FG	SDin	•	0	•	DGND, SDout		
13	spare		•	•	spare		
	35.22 MHz-		•	•	35.22 MHz+		
Clocks	spare	•		lacktriangle	spare		
Differential ECL	-) 17.61 MHz	- \mid 🌑		lacktriangle	17.61 MHz+		
Module Address (MA3-0)	MA0	•		lacktriangle	MA1 8 x DGND		
	10 MHz-	•		•	10 MHz+		
	MA2	•	\rightarrow	•	MA3		
	Fc-	•		•	Fc+		
21		•	•	•	-5.2 V (for backplane ECL buffers onl		
Jtag	TDI	•	0	•	DGND, TDO		
	TCK	•		•	!ENA, TMS		
Extra Digital V		•	•	•	+3.3 V Switched Mode		
		•	•	•	DGND Power Supply		
26		•	•	•	AGND		
spare		•	•		Module Serial Number Bus		
Analog Power		•	•	•	+12 V		
Supply + AGND		•	•	•	+6 V Linear Power		
(3 pins each)		•	•	•	-6 V Supply		
		•	•	•	-12 V		
32		•	•	•	AGND		

wer connector: 3 x 32 pins version 11/30/2008

SPL LLRF studies

- H- Linac at Linac4 output (from 160 MeV to 4 GeV)
- Multi-cell Super-Conducting structures (Q_L ~10⁶) at 704.4 MHz
- 2 Hz rep rate
- 20 mA Linac current
- Only study so far (fast tuner to compensate the Lorentz Force detuning)

4. HIE-Isolde LLRF proposal

HIE-Isolde LLRF

- CW operation
- Super Conducting QWR structures
- Q_L ~ 10⁷ around 100 MHz
- Solid state amplifier Peak Power < 1 kW. One amplifier per cavity. 250W needed on tune.
- 1 pA Linac current
- Target: Field stabilization within 0.5 deg and 0.5 %

Very low intensity CW SC Linac.

Challenge: Very high Q_L

Functionalities. For each cavity

- A Tuner Loop to keep the structure on resonance
- An RF Feedback to keep the accelerating voltage at the desired value in the presence of perturbations (vibrations, Helium pressure fluctuations, ..). Normal operation in Driven Mode.
- A Self-Excited Polar Loop to enable SEL Operation at start-up when the tune is way off or without tuner
- A Conditioning System monitoring the Window Vacuum while feeding the cavity with Frequency Modulated bursts of RF power of increasing amplitude
- A Klystron Drive Limiter to limit the drive in Self-Excited Loop mode

Similar to Linac4 – but klystron loop replaced by SEL loop around the cavity

Normal operation. Driven feedback system.

- Cavity Controller close to Cavity.
 - Max 30 m round-trip (~ 100 ns cable delay)
 - Allowing 100 ns for RF Amplifier
 - RF feedback BW (2-sided) in excess of 2 MHz ...if sufficient Amplifier power.
- For each cavity, the Set point is individually provided as an (I,Q) set vector
- The Phase and amplitude controls in the RF Modulator are set at fixed values (SE Polar Loop OFF)

Tuner

- Q=10⁷ -> only 10 Hz 2-sided BW
- Stability of the structure
 - Mechanical resonances (64 Hz?)
 - Microphonics (2 Hz rms?)
 - Sensitivity to He pressure fluctuations 0.01 Hz/mbar (0.3 Hz for expected 30 mbar ripple)
 - Precision of the tuning mechanics: 1 μm -> ~10 Hz = 1 BW!

To be measured ASAP

Then study/simulation with the LLRF

- Resolution of the Tuner RF front-end
 - 200 kHz tuning range = 20000 BW
 - At 5 kHz offset, V_{cav} is reduced by 60 dB

Startup

- With cavity way out of tune, Tuner loop may not lock...
- Two possibilities
 - Open Loop using the Conditioning DDS
 - Sweep frequency of Conditioning DDS to find the resonance.
 - Then move the tuner to get in the Locking Range of the tuner loop
 - Self-Excited Mode
 - With the RF Feedback
 - Reduce RF feedback gain so that resonance can only take place in the Cavity BW
 - Intentionally add 180 degrees to the Modulator Phase to make the RF feedback unstable
 - With the SE Polar Loop
 - Open the RF feedback. Set a fixed (I,Q) at the modulator input.
 - Adjust phase of SE Polar Loop to initiate resonance
- Advantage: The Self-Excited Loop can be used without tuner (Labtests)
- To be studied
 - SEL implemented in I/Q coordinates (using the RF feedback) vs. implementation using the SE Polar loop
 - Control of Cavity voltage when in SEL mode

Thank you...

Additional material if questions arise

RF feedback Theory

- RF Feedback theory [6],[7]
 - Minimal cavity impedance (with feedback) scales linearly with T

$$R_{\min} = \frac{2}{\pi} \frac{R}{Q} \omega_0 T$$

Achieved for a gain value proportional to Q

$$G_{opt} \approx \frac{Q}{\omega_o T}$$

Achievable fdbk BW inversely proportional to T

$$\Delta \omega = \frac{1.3}{T}$$

