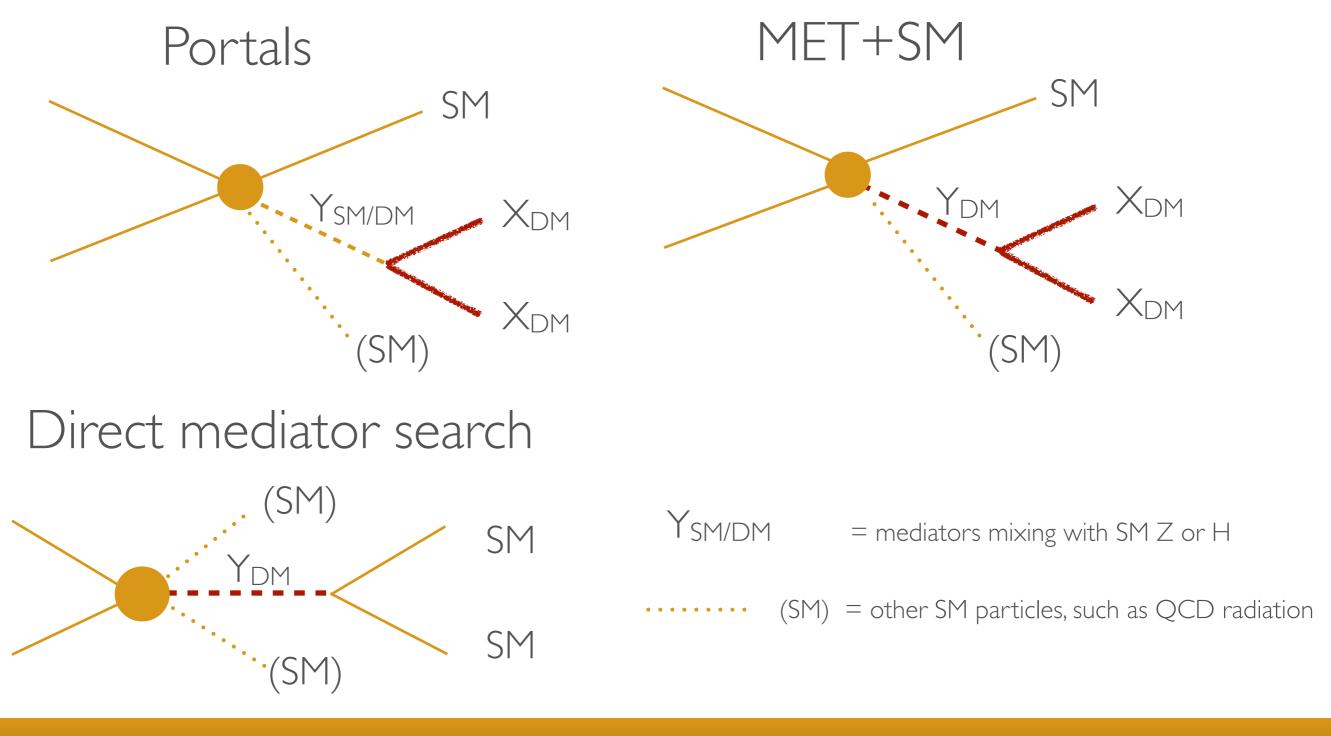


Discussion on Monte Carlo tools for DM@LHC

Fabio Maltoni Centre for Cosmology, Particle Physics and Phenomenology (CP3) UCLouvain Belgium



Outline

- s-channel simplified models : status and directions
- t-channel simplified models : status and directions
- What more is needed?
- Towards a DM-MC-wishlist

Search for DM at the LHC: s-channel mediators

Université catholique

s-channel spin-0 mediators

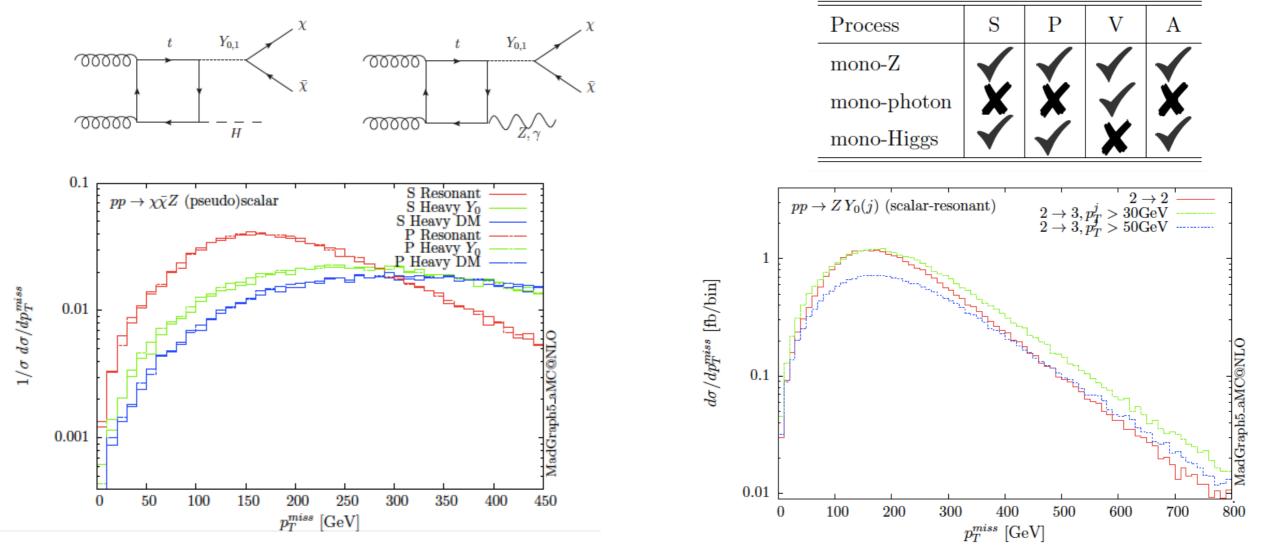
spin-0 (A/P)	MCFM	POWHEG-BOX	MG5aMC
X _{DM} X _{DM} +jets	I -jet at NLO ''HEFT''	I-jet at NLO+PS	NLO+PS and FxFx in the HEFT. MEPS@LO loop induced [Backovic et al., 2015]
$X_{\text{DM}} X_{\text{DM}}$ + γ	NLO (light quarks)		NLO+PS and FxFx in the HEFT. MEPS@LO loop induced
$X_{DM} X_{DM} + Z \text{ or } W$			NLO+PS and FxFx in the HEFT. MEPS@LO loop induced [M. Neubert, J. Wang, C. Zhang, 2015]
X _{DM} X _{DM} +heavy quarks			NLO+PS [Backovic et al., 2015]

s-channel spin-1 mediators

spin-1 (A/P)	MCFM	POWHEG-BOX	MG5aMC
X _{DM} X _{DM} +jets	I-jet at NLO	I-jet at NLO+PS	NLO+PS and FxFx [Backovic et al., 2015]
X _{DM} X _{DM} +γ (+jets)	NLO		NLO+PS (and FxFx)
X _{DM} X _{DM} +Z or W (+jets)			NLO+PS (and FxFx) [M. Neubert, J. Wang, C. Zhang, 2015]
X _{DM} X _{DM} +heavy quarks			NLO+PS [Backovic et al., 2015]

s-channel spin-2 mediator

[Das, Degrande, Hirschi, Shao, 2016]


spin-2	MG5aMC	
Х _{DM} Х _{DM} + 0, I, (2) jets	NLO+PS (and FxFx)	
$X_{DM} X_{DM}$ +γ	NLO+PS	
X _{DM} X _{DM} +Z	NLO+PS	
X _{DM} X _{DM} +W ⁺⁻	NLO+PS	
X _{DM} X _{DM} +t tbar	NLO+PS	

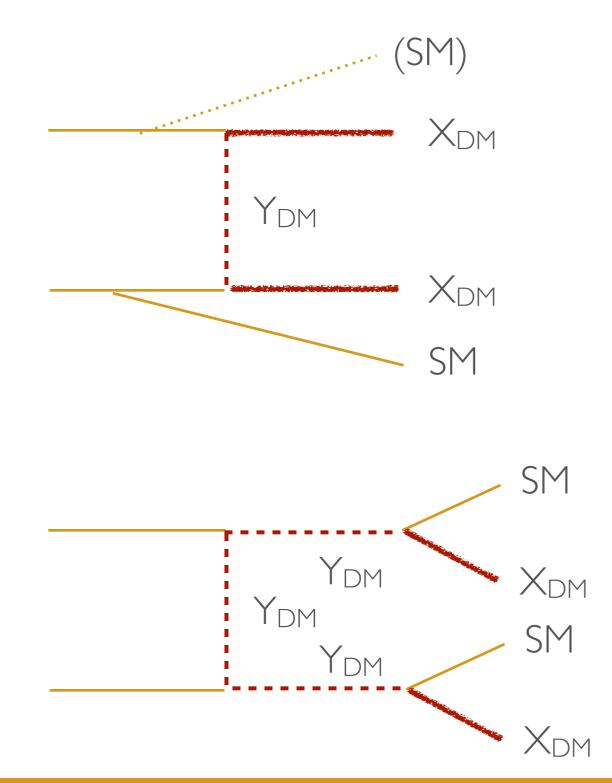
Loop-induced $X_{DM} X_{DM} + (H, Z, Y)$

[Haisch et al., 2013] [Fox and Williams, 2013] [Haisch et al., 2014] [Harris et al. 2014] [Haisch and Re, 2015]

[Mattelaer and Vryonidou, 2015]

Scalar mediator coupled to the top leads to $X_{DM} X_{DM} + H$, Z or Y. Selection rules are found. Very different shape of Etmiss depending on the associated production. The effect of extra gluon radiation on the shape Etmiss can also be studied.

Questions


- What else is needed?
- Does the nature of the DM matter at the LHC? Dirac and Scalar is available? Should we have Majorana? What about vector dark matter?
- Higgs portals (scalar, vector, fermion, tensor...)? see for examp

see for example [Endo and Takaesu, 2014]

$$\mathcal{L}_{S} = \frac{1}{2} \partial^{\mu} S \partial_{\mu} S - \frac{1}{2} M_{S}^{2} S^{2} - \lambda_{S} S^{4} - c_{S} |H|^{2} S^{2},$$

$$\mathcal{L}_{V} = -\frac{1}{4} V^{\mu\nu} V_{\mu\nu} + \frac{1}{2} M_{V}^{2} V^{\mu} V_{\mu} - \lambda_{V} (V^{\mu} V_{\mu})^{2} + c_{V} |H|^{2} V^{\mu} V_{\mu},$$

$$\mathcal{L}_{B} = \frac{1}{4} \partial_{\lambda} B^{\mu\nu} \partial^{\lambda} B_{\mu\nu} - \frac{1}{2} \partial^{\mu} B_{\mu\nu} \partial_{\rho} B^{\rho\nu} - \frac{1}{4} M_{B}^{2} B^{\mu\nu} B_{\mu\nu}$$

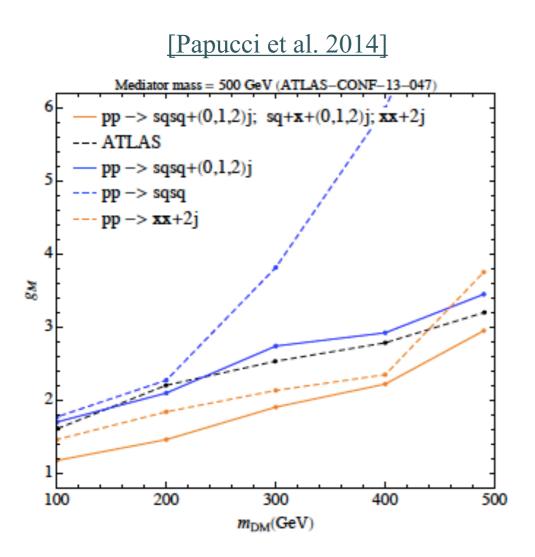
$$- \lambda_{B} B_{\mu\nu} B^{\nu\lambda} B_{\lambda\rho} B^{\rho\mu} - c_{B} |H|^{2} B^{\mu\nu} B_{\mu\nu},$$

• Less simplified models...set of minimal UV-consistent models? Which ones?

Search for DM at the LHC: t-channel mediators

YDM SM XDM

Rules of the thumb for t-channel-mediator phenomenology at the LHC:

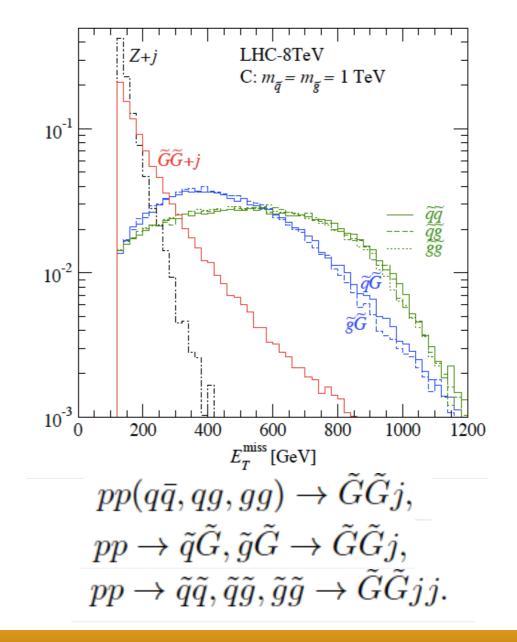

- Search for DM and mediators are normally entangled.
- SUSY-like searches.
- jets+mET golden channel

Université catholique

Search for DM at the LHC: t-channel mediators

[Alwall et al., 2008]

Université catholique


1. $pp \rightarrow \tilde{q}\tilde{q}^{\dagger} + (0, 1, 2)j;$

CERN

2. $pp \rightarrow \chi \tilde{q}^{\dagger}, \bar{\chi} \tilde{q} + (0, 1, 2)j$ with no mass-shell integration for internal squark lines;

3. $pp \rightarrow \chi \bar{\chi} + (0, 1, 2)j$ with no mass-shell integration for internal squark lines.

[De Aquino et al., 2012] [Martini et al., 2015]

Fabio Maltoni

Questions

- Predictions are currently LO (ME+PS) in QCD. Should we improve?
- All simplified models are SUSY-like What else?
- Is there any "urgent" request?

[De Simone and Jacques, 1603.08002]

Mediator spin	Channel	DM spin	Model Name	Discussed in Section
0	S	0	0s0	3.2.1
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	3.2.2
0	t	0	OtO	3.2.3
0	t	$\frac{1}{2}$	Ot $\frac{1}{2}$	3.2.4
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	3.3.1
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	3.3.2
1	s	0	1 <i>s</i> 0	3.4.1
1	5	$\frac{1}{2}$	$1s\frac{1}{2}$	3.4.2
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	3.4.3

Table 9: Simplified models for scalar and fermion DM.

Towards a DM-MC-wishlist

- What are the most important collider predictions for which an accurate prediction is missing?
- What are the most motivated and urgent simplified model implementations in MC still missing?
- Are there final state signatures which need special care (like mono-top)?
- What about more UV-complete models? Can we make an "ordered" list?
- What about combining LHC results with non-collider constrains? Complete/ easy-to-use frameworks (see e.g. [Arina et al., 2016])?