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How it all began?

Part 1



Classical Solutions of Yang-Mills
❖ Plane wave ansatz:

❖ There are massive solutions!

❖ Further simplification with   
produces the Hamiltonian:

❖ This system was studied experimentally by Natalia 
Savvidy starting in 1981 on a PDP-9
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PRNG
❖ In the course of this research the idea came about that if 

there was any system which was provably chaotic in all 
of the phase space, then such a system could be used as 
a source of good quality pseudo-random numbers.

Sinai Billiards As A Pseudorandom Number Generator  
R.O. Abramian, N.Z. Akopov, G.K. Savvidy, N.G. Ter-Arutunian Savvidy (Yerevan Phys. Inst.). Jul 1986. 8 pp.  
EFI-922-73-86-YEREVAN 

On The Problem Of Monte Carlo Modeling Of Physical Systems  
G.K. Savvidy, N.G. Ter-Arutunian Savvidy (Yerevan Phys. Inst.). Jan 1986. 13 pp.  
EFI-865-16-86-YEREVAN, EFI-865(16)-86 

http://inspirehep.net/record/239937
http://inspirehep.net/author/profile/Abramian%2C%20R.O.?recid=239937&ln=en
http://inspirehep.net/author/profile/Akopov%2C%20N.Z.?recid=239937&ln=en
http://inspirehep.net/author/profile/Savvidy%2C%20G.K.?recid=239937&ln=en
http://inspirehep.net/author/profile/Ter-Arutunian%20Savvidy%2C%20N.G.?recid=239937&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Yerevan%20Phys.%20Inst.%22&ln=en
http://inspirehep.net/record/231171
http://inspirehep.net/author/profile/Savvidy%2C%20G.K.?recid=231171&ln=en
http://inspirehep.net/author/profile/Ter-Arutunian%20Savvidy%2C%20N.G.?recid=231171&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Yerevan%20Phys.%20Inst.%22&ln=en


Part 2, MIXMAX
❖ Mixmax is a specific matrix 

realization of a chaotic dynamical 
matrix-recursive system:

❖ A is a specific matrix  
 

❖ So,

❖ It is defined on a N-dimensional real 
torus with periodic boundary 
conditions:
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Tangent space
❖ The tangent space of the torus is simply R^N and the 

automorphism acts on it as linearly. There are 
contracting X and expanding Y linear spaces, these are 
spanned by the eigenvectors of the matrix which 
correspond respectively to the eigenvalues inside and 
outside the unit circle.
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Contracting and Expanding Foliations

❖ Roughly speaking, for each trajectory there is a multitude of other 
trajectories, which infinitely approach it as                     . These form 
all together the  contracting foliation. It is not invariant under T.  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Entropy
❖ Calculating the volume expansion rate on Y, we get:

❖ Equally well, on the contracting space X, the volume contraction rate is  
 
 
 

❖ Decay of correlations is also governed by entropy:  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Measuring the speed of divergence
❖ Phase space volume is conserved, 

❖ This means that if we split the tangent space into  
the C-dimensional contracting space X and the N-C dimensional space Y then 
the expansion and contraction is equal, but how can we define it?

❖ The volume on X contract exponentially:

❖ The volume on Y expands, also exponentially, and at the same rate:

❖ What is H? It is the entropy!!!

❖ Under inversion of time,                       , X and Y are exchanged.

detA = 1

VX(t) = VX(0)⇥ e�Ht

VY (t) = VX(0)⇥ e+Ht

t ! �t



❖ There exists periodic and aperiodic trajectories.

❖ Periodic trajectories of the desired period T can be 
found by solving the following equation:  
 
where b is an integer vector.

❖ The solution is 

❖ It follows that since A^T - I is nonsingular,  the solution 
exists for all b, and x is typically a vector of rational 
numbers with the same denominator for each T.

❖ Also, it immediately proves that ALL irrational vectors 
lie on aperiodic trajectories.
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The period
❖ If you start with x as a rational vector, it will remain on  

the same rational sub lattice generated by the p=lcd(x)

❖ The search for trajectories with provable periods leads to 
sub lattices where this denominator is a prime number.

❖ This by itself does not lead to all points on the lattice 
having the same period.

❖ Existing mathematical literature also did not seem to 
have the appropriate criterion ready.



The period
❖ The conditions turned out to be the following one:  

1) The characteristic polynomial of the matrix should be  
irreducible in the Galois field  
 
2) If and only if 1) is true, then the period of all trajectories on the 
rational sub lattice will be the same and the period will be some 
simple fraction of  
 
  

❖ I have developed some technology and powerful analytical methods 
to compute the characteristic polynomial and to check this condition.  

q =
pN � 1

p� 1

F[pN ]

F[p]

Remark: the characteristic polynomial of this system cannot be a primitive polynomial in the field 



Computer Realization
❖ We work with rational numbers:  

❖ Then, the recursion is equivalent to  
 

❖ The computer simulates the periodic, rational 
trajectories exactly.  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Search for generators  
with largest N and period

❖ The search ran in 2015 for several CPU-months 
and has yielded the following generators:  In the next section we shall explore additional MIXMAX parameter values N and s in

order to maximise its entropy and period without disturbing its spectral properties.

Size Magic Entropy Period

N s (lower bound) ¥ log10(q)

7307 0 4502.1 134158

20693 0 12749.5 379963

25087 0 15456.9 460649

28883 1 17795.7 530355

40045 -3 24673.0 735321

44851 -3 27634.1 823572

Table 1: Table of properties of generators for large matrix size N . The third column is
the value of the Kolmogorov entropy, which needs to be greater than about h ¥ 50 for the
generator to be empirically acceptable. Therefore, it should not be surprising that for all
of these generators, the sequence passes all tests in the BigCrush suite [16]. For the largest
of them, the period approaches a million digits.

2 Additional Parameter Values of MIXMAX A(N,s)

We wish to disclose some additional parameter values for the MIXMAX generator, in
addition to those found in [8]. First of all, the properties of the MIXMAX generators
improve appreciably with N, the size of the matrix, and therefore we have undertaken a
search for large values of N and some small values of the parameter s. Because the speed of
the generator does not depend on N , these generators are useful if the dimension D of the
Monte-Carlo integration is large but finite, in which case one would like to choose N Ø D.
If a generator with such large N is available, then the convergence of the Monte-Carlo
result to the correct value and with a residual which is normally distributed is assured.
The latter guarantee is given by the theorem of Leonov [15, 9].

Our search for MIXMAX generator parameters with large N and maximal period has
yielded the values presented in the Table 1. As one can deduce from this data the entropy
is sharply increasing with N. As it was demonstrated in [8] the Kolmogorov entropy, which

3



The Spectrum

❖ Ok, so what is actually the spectrum of the eigenvalues 
of the MIXMAX matrix?

❖ It is complex, with many eigenvalues with |λ| ~ 1/4
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Limiting entropy
❖ We have been able to prove the following limiting 

formula as  
 
 

❖ Such a curve is called a “cardiod” and its inverse is 
simply a parabola.

❖ This allows to calculate the limiting value of the entropy 
as well: 

r(�) = 4 cos

2
(�/2)

N ! 1

H ! 2

⇡
N



Dependence of the SPECIAL on nearby trajectories
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New Family of generators

❖ Increasing N leads to linearly-increasing entropy, but 
can we make generators with good mixing properties 
for small N?

❖ We have proposed a generalized, three- and four- 
parameter matrixes in the same family which have 
much larger entropy, much bigger maximum 
eigenvalues and much smaller small eigenvalues.



Three parameter family

❖ For m=1 it reduces to the old matrix
❖ It is still of the almost-band form
❖ The progression of the integers is arithmetic
❖ The correspondence between the discrete and continuous system  

is exact and unambiguous if   (N - 2)*m + 2 < p
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Figure 3: The distribution of the eigenvalues of the operator A(N, s, m) in (3.12) for large value
of s and m, but fixed, and increasing values of N = 60, 120, 240 from Table 3. The spectrum
represents a leaf of a large radius proportional to ⁄

max

¥ m and a very small eigenvalue at the origin
⁄

min

¥ m

≠N+1. With increasing N the “stem of the leaf” becomes more pronounced on the left
hand side of the spectral curve.

sequence m + 2, 2m + 2, 3m + 2, ..., (N ≠ 2)m + 2, where m is some integer:

A(N, s, m) =

Q

ccccccccccccccccccca

1 1 1 1 ... 1 1

1 2 1 1 ... 1 1

1 m + 2 + s 2 1 ... 1 1

1 2m + 2 m + 2 2 ... 1 1

1 3m + 2 2m + 2 m + 2 ... 1 1

...

1 (N ≠ 2)m + 2 (N ≠ 3)m + 2 (N ≠ 4)m + 2 ... m + 2 2

R

dddddddddddddddddddb

(3.12)

Thus the case of m = 1 simply corresponds to the original matrix (2.6). It is most advantageous
to take large values of m, but preferably keeping Nm < p, such as to have an unambiguous corre-
spondence between the continuous system (1.1) and the discrete system on the rational sublattice.
The distribution of the eigenvalues of the operator A(N, s, m) for the values of s and m which are
given in Table 3 are presented on Fig.3. The spectrum for the increasing values of N = 60, 120, 240
is shown in sequence, from left to right. The spectrum represent a leaf of a large radius proportional
to ⁄

max

¥ m and very small eigenvalue at the origin ⁄

min

¥ m

≠N+1. With increasing N the “stem
of the leaf” becomes more pronounced on the left hand side of the spectral curve.

A further possible generalization of the three-parameter family of operators is the following: the
four-parameter operators A(N, s, m, b) is constructed by replacing the sequence in the bands, below
the diagonal, which is originally 3, 4, 5, ..., N with the sequence 3m + b, 4m + b, 5m + b, ..., Nm + b,
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Some specific members of  
the three-parameter family

Size Magic Magic Entropy Log of the period q

N m s ¥ log10(q)

8 m = 253 + 1 s=0 220.4 129

17 m = 236 + 1 s=0 374.3 294

40 m = 242 + 1 s=0 1106.3 716

60 m = 252 + 1 s=0 2090.5 1083

96 m = 255 + 1 s=0 3583.6 1745

120 m = 251 + 1 s=1 4171.4 2185

240 m = 251 + 1 s=487013230256099140 8679.2 4389

Table 3: Table of three-parameter MIXMAX generators A(N, s, m) in (3.12). These generators have
an advantage of having a very high quality sequence for moderate and small N . In particular, the
smallest generator we tested, N = 8, passes all tests in the BigCrush suite [23]. The period q is
defined in (2.10), (4.15).

where m and b are some integers:

A(N, s, m, b) =

Q

ccccccccccccccccccca

1 1 1 1 ... 1 1

1 2 1 1 ... 1 1

1 3m + s + b 2 1 ... 1 1

1 4m + b 3m + b 2 ... 1 1

1 5m + b 4m + b 3m + b ... 1 1

...

1 Nm + b (N ≠ 1)m + b (N ≠ 2)m + b ... 3m + b 2

R

dddddddddddddddddddb

. (3.13)

This four-parameter family A(N, s, m, b) reduces back to the three-parameter family A(N, s, m) for
b = 2 ≠ 2m. It is the case that some of these four-parameter generators, for specially chosen m and
b, allow e�cient computer multiplication - the property which plays an essential role if one tries to
use these operators for Monte-Carlo simulations.

4 Computer Implementation. MIXMAX Random Number Generator

In a typical computer implementation [3, 36] of the periodic trajectories of the automorphism (1.1)
the initial vector

u

(k) = (u(k)
1 , ..., u

(k)
N

)
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Spectrum of the three-parameter family

-2¥ 1015 2¥ 1015 4¥ 1015 6¥ 1015 8¥ 1015 1¥ 1016

-6¥ 1015

-4¥ 1015

-2¥ 1015

2¥ 1015

4¥ 1015

6¥ 1015

5.0¥ 1015 1.0¥ 1016 1.5¥ 1016 2.0¥ 1016

-1.5¥ 1016

-1.0¥ 1016

-5.0¥ 1015

5.0¥ 1015

1.0¥ 1016

1.5¥ 1016

2¥ 1016 4¥ 1016 6¥ 1016 8¥ 1016 1¥ 1017

-6¥ 1016

-4¥ 1016

-2¥ 1016

2¥ 1016

4¥ 1016

6¥ 1016

Figure 3: The distribution of the eigenvalues of the operator A(N, s, m) in (3.12) for large value
of s and m, but fixed, and increasing values of N = 60, 120, 240 from Table 3. The spectrum
represents a leaf of a large radius proportional to ⁄

max

¥ m and a very small eigenvalue at the origin
⁄

min

¥ m

≠N+1. With increasing N the “stem of the leaf” becomes more pronounced on the left
hand side of the spectral curve.

sequence m + 2, 2m + 2, 3m + 2, ..., (N ≠ 2)m + 2, where m is some integer:

A(N, s, m) =

Q

ccccccccccccccccccca

1 1 1 1 ... 1 1

1 2 1 1 ... 1 1

1 m + 2 + s 2 1 ... 1 1

1 2m + 2 m + 2 2 ... 1 1

1 3m + 2 2m + 2 m + 2 ... 1 1

...

1 (N ≠ 2)m + 2 (N ≠ 3)m + 2 (N ≠ 4)m + 2 ... m + 2 2

R

dddddddddddddddddddb

(3.12)

Thus the case of m = 1 simply corresponds to the original matrix (2.6). It is most advantageous
to take large values of m, but preferably keeping Nm < p, such as to have an unambiguous corre-
spondence between the continuous system (1.1) and the discrete system on the rational sublattice.
The distribution of the eigenvalues of the operator A(N, s, m) for the values of s and m which are
given in Table 3 are presented on Fig.3. The spectrum for the increasing values of N = 60, 120, 240
is shown in sequence, from left to right. The spectrum represent a leaf of a large radius proportional
to ⁄
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¥ m and very small eigenvalue at the origin ⁄
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≠N+1. With increasing N the “stem
of the leaf” becomes more pronounced on the left hand side of the spectral curve.

A further possible generalization of the three-parameter family of operators is the following: the
four-parameter operators A(N, s, m, b) is constructed by replacing the sequence in the bands, below
the diagonal, which is originally 3, 4, 5, ..., N with the sequence 3m + b, 4m + b, 5m + b, ..., Nm + b,
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–Thank you!



Overflow slides follow



Other generators
❖ RCARRY was an LCG crafted by Marsaglia to be fast, 

but has a bad multiplier. Luscher studied the system 
from dynamical systems point of view.

The eigenvalues closest to the circle have |λ| ≈ 1.0085, the farthest |λ| ≈ 1.043. 

The trouble is related to the fact that  
the characteristic polynomial of the  

system is space: 

x

24 � x

14 + 1 = 0



Mersenne Twister
❖ The situation is even worse for the Mersenne Twister.  

It is a generator with N=19937 and p=2, and with a 
very sparse matrix and polynomial.



RCARRY and RANLUX
❖ r:=24;
❖ s:=10;
❖ b:=2^24;
❖ m := b^r - b^s +1;
❖ m = (binary)  
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000001

❖ a:=m - (m-1)/b;
111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111000000000000000000000001000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000001

❖ luxa := a^(389) mod m; 
110111110000011000000000000000000000000000000010111011100000000000100000000000000000000000000000101
110010010010000101111111111111111111111111101111101100110000001001111111111111111111111111110010010
101011000101100000000000000000000000000000110110010010101010110000000000000000000000000001111010010
011111100101111111111111111111111111111010110010011110011111111111111111111111111111011100111001000
101001101111111111111111111111111110010100100101011101000000000000000000000000000010110000111000100
10110000000000000000000000000001011101100101011001001000000000000000000000000

x` = a*x mod m

x[i+389] = luxa * x[i] mod m



Some particular realizations 
of MIXMAX

Size Magic Entropy Period q is
N s (lower bound) τ/q ≈ log10(q) fully factored BigCrush

10 −1 6.2 1/4 165 Yes 33
16 6 9.9 1/32 275 Yes > 13
40 1 24.6 1/4 716 Yes 3
44 0 27.1 1/4 789 No 4
60 4 37.0 1 1083 Yes 2
64 6 39.4 1/8 1156 No 1 (?)
88 1 54.2 1/2 1597 No Pass

256 −1 157.7 1 4682 No Pass
508 5 313.0 1 9309 No Pass
720 1 443.6 1 13202 No Pass

1000 0 616.1 1/20 18344 No Pass
1260 15 776.3 1/2 23118 No Pass
3150 −11 1940.8 1/12 57824 No Pass

Table 1: Table of properties of generators for different matrix size N and special magic
value s. For each N that we investigated, the period τ is given as a fraction of q =
(pN −1)/(p−1). For cases where the full integer factorization of q is known, unconditional
guarantee can be given about the period of the sequence. In all cases the characteristic
polynomial was proved to be irreducible by Pari/GP [20]. The last column indicates
whether the generator for that N and special value s passes the BigCrush suite of tests,
and if not how many tests are failed. The case of N = 60 uses a doubly special matrix which
has two entries modified: a32 = a54 = 3 + s. It is seen that the generator gets uniformly
better with N until it passes all tests. The most discriminative test for this family of
generators appears to be the classic Gap test. On this test alone, the improvement with
N is also evident, with progressively better p-values as N is increased, e.g. for N=64 the
value of χ2 ≈ 372 for 232 degrees of freedom with χ2/dof ≈ 1.6 indicates only a marginal
failure. For all N > 64 which we have tested, the generator passes all tests.
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