Anosov C-systems and MIXMAX RNG Generator

George Savvidy

Institute of Nuclear and Particle Physics Demokritos National Research Center Athens, Greece

Second MIXMAX Meeting 4 July 2016 **CERN**

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

[Anosov C-systems](#page-3-0)

[Spectrum and Kolmogorov Entropy of the C-systems](#page-16-0)

 $A(N,s)$ and $A(N,s,m)$ Family of C-operators

[MIXMAX random number generators](#page-35-0)

4 n + 4 n +

4 E 6 4 E 6

1.G.Savvidy and N. Ter-Arutyunyan, On the Monte Carlo simulation of physical systems J.Comput.Phys. **97** (1991) 566; Preprint EFI, 1986

2.K.Savvidy, The MIXMAX random number generator Comput.Phys.Commun. 196 (2015) 161

3.G. Savvidy, Anosov C-systems and Random Number Generators Theor.Math.Phys. 2016; arXiv:1507.06348

4.G. G. Athanasiu, E. G. Floratos, G. K. Savvidy K-system generator of pseudorandom numbers on Galois field, Int. J. Mod. Phys. C **8** (1997)

5.K.Savvidy and G.Savvidy Spectrum and Entropy of C-systems. MIXMAX Generator, Chaos, Solitons and Fractals, 91 (2016) 33-38

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

Dmitri Anosov, in his fundamental work on hyperbolic dynamical C-systems pointed out that the basic property of the geodesic flow on closed Riemannian manifolds *V ⁿ* of negative curvature is a uniform instability of all its trajectories.

In physical terms that means that in the neighbourhood of every fixed trajectory the trajectories behave similarly to the trajectories in the neighbourhood of a saddle point.

The hyperbolic instability of the dynamical system $\{T^t\}$ which is defined by the equations $(w \in W^m)$

$$
\dot{w} = f(w) \tag{1}
$$

ה הר

takes place for all solutions $\delta w \equiv \omega$ of the deviation equation

$$
\dot{\omega} = \frac{\partial f}{\partial w}\Big|_{w(t) = T^t w} \omega \tag{2}
$$

in the neighbourhood of each phase trajecto[ry](#page-2-0) $w(t) = T^t_\varepsilon w.$ $w(t) = T^t_\varepsilon w.$

The Anosov C-systems are genuine hyperbolic systems

the behaviour of all nearby trajectories is exponentially unstable

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

 $2Q$

≣

The C-condition requires that the tangent space R^m_w at each point *w* of the m-dimensional phase space W^m of the dynamical system {*T ⁿ*} should be decomposable into a direct sum of the two linear spaces X^k_w and Y^l_w with the following properties:

$$
C1.
$$
\n
$$
R_w^m = X_w^k \oplus Y_w^l
$$
\n
$$
and they are such that \{\tilde{T}^n\}
$$
\n
$$
C2.
$$
\n
$$
a)|\tilde{T}^n\xi| \leq a|\xi|e^{-cn} \text{ for } n \geq 0; \ |\tilde{T}^n\xi| \geq b|\xi|e^{-cn} \text{ for } n \leq 0, \ \xi \in X_w^k
$$
\n
$$
b)|\tilde{T}^n\eta| \geq b|\eta|e^{cn} \text{ for } n \geq 0; \ |\tilde{T}^n\eta| \leq a|\eta|e^{cn} \text{ for } n \leq 0, \ \eta \in Y_w^l,
$$

where the constants a,b and c are positive and are the same for all $w \in W^m$ and all $\xi \in X^k_w$, $\eta \in Y^l_w$. The length $|...|$ of the tangent vectors *ξ* and *η* is defined by the Riemannian metric *ds* on *Wm*. K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ Ω

The contracting and expanding foliations Σ_{w}^{k} and Σ_{w}^{l}

Figure : At each point w of the C-system the tangent space R_w^m is decomposable into a direct sum of two linear spaces Y^l_w and X^k_w . The expanding and contracting geodesic flows are *γ* ⁺ and *γ* [−]. The expanding and contracting invariant foliations Σ^l_w and Σ^k_w *are transversal to the* geodesic flows and their corresponding tangent s[pa](#page-5-0)c[es](#page-7-0) [a](#page-5-0)[re](#page-6-0) $Y_{w_\equiv}^l$ $Y_{w_\equiv}^l$ $Y_{w_\equiv}^l$ $Y_{w_\equiv}^l$ [a](#page-15-0)[n](#page-16-0)[d](#page-2-0) X_w^k X_w^k .

 Ω

Important Example of C-system: Torus Automorphisms Consider linear automorphisms of the unit hypercube in Euclidean space R^N with coordinates $(u_1, ..., u_N)$ where $u \in [0, 1)$

$$
u_i^{(k+1)} = \sum_{j=1}^{N} A_{ij} u_j^{(k)}, \quad \text{mod } 1, \quad k = 0, 1, 2 \dots \tag{6}
$$

イロメ イ押 トイラ トイラメー

へのへ

 \blacktriangleright The dynamical system defined by the integer matrix A has determinant equal to one $Det A = 1$.

Important Example of C-system: Torus Automorphisms Consider linear automorphisms of the unit hypercube in Euclidean space R^N with coordinates $(u_1, ..., u_N)$ where $u \in [0, 1)$

$$
u_i^{(k+1)} = \sum_{j=1}^{N} A_{ij} u_j^{(k)}, \quad \text{mod } 1, \quad k = 0, 1, 2 \dots \tag{6}
$$

- \triangleright The dynamical system defined by the integer matrix A has determinant equal to one $Det A = 1$.
- \blacktriangleright The Anosov hyperbolicity C-condition: the matrix A has no eigenvalues on the unit circle. Thus the spectrum $\Lambda = \lambda_1, ..., \lambda_N$ fulfils the two conditions:

1)
$$
Det A = \lambda_1 \lambda_2\lambda_N = 1, \qquad 2) \ \ |\lambda_i| \neq 1. \tag{7}
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

へのへ

G. Savvidy, Demokritos Nat.Res.Cent. Athens [EU Marie Curie RISE GA-644121](#page-0-0)

メロトメ 御 トメ ミトメ ミトリ (毛)

 299

 \blacktriangleright The eigenvalues of the matrix A are divided into the two sets ${\lambda_\alpha}$ and ${\lambda_\beta}$ with modulus smaller and larger than one:

$$
0 < |\lambda_{\alpha}| < 1 < |\lambda_{\beta}|. \tag{8}
$$

メロト メタト メミト メミト

 $2Q$

€

 \blacktriangleright The eigenvalues of the matrix A are divided into the two sets $\{\lambda_{\alpha}\}\$ and $\{\lambda_{\beta}\}\$ with modulus smaller and larger than one:

$$
0<|\lambda_{\alpha}|<1<|\lambda_{\beta}|.\tag{8}
$$

イロメ イタメ オラメイラメ

へのへ

 \blacktriangleright There exist two families of planes $X = \{X_\alpha\}$ and $Y = \{Y_\beta\}$ which are parallel to the corresponding eigenvectors {*eα*} and {*eβ*} .

[Anosov C-systems](#page-3-0)

[Spectrum and Kolmogorov Entropy of the C-systems](#page-16-0) $A(N,s)$ and $\overline{A}(N,s,m)$ Family of C-operators [MIXMAX random number generators](#page-35-0)

► The eigenvectors of the matrix A ${e_{\alpha}}$ and ${e_{\beta}}$ define two families of parallel planes $\{X_\alpha\}$ and $\{Y_\beta\}$

イロメ イ母メ イヨメ イヨメー

É

[Anosov C-systems](#page-3-0)

[Spectrum and Kolmogorov Entropy of the C-systems](#page-16-0) $A(N,s)$ and $\overline{A}(N,s,m)$ Family of C-operators [MIXMAX random number generators](#page-35-0)

- **►** The eigenvectors of the matrix A ${e_{\alpha}}$ and ${e_{\beta}}$ define two families of parallel planes $\{X_\alpha\}$ and $\{Y_\beta\}$
- \triangleright The automorphism A is contracting the points on the planes ${X_\alpha}$ and expanding points on the planes ${Y_\beta}$.

メロト メタト メミト メミト

[Anosov C-systems](#page-3-0)

[Spectrum and Kolmogorov Entropy of the C-systems](#page-16-0) [A\(N,s\) and A\(N,s,m\) Family of C-operators](#page-26-0) [MIXMAX random number generators](#page-35-0)

- **►** The eigenvectors of the matrix A ${e_{\alpha}}$ and ${e_{\beta}}$ define two families of parallel planes $\{X_{\alpha}\}\$ and $\{Y_{\beta}\}\$
- \triangleright The automorphism A is contracting the points on the planes ${X_\alpha}$ and expanding points on the planes ${Y_\beta}$.
- **►** The a) depicts the parallel planes of the sets $\{X_\alpha\}$ and $\{Y_\beta\}$ and b) depicts their positions after the action of the automorphism A. メロメ メ御 メメ ヨメメ ヨメー

へのへ

Periodic Trajectories of Anosov C-systems

All trajectories with rational coordinates $(w_1, ..., w_m)$, and only they, are periodic trajectories of the automorphisms of the torus.

Let us fix the integer number *p*, then the points on a torus with the coordinates having a denominator *p* form a finite set ${a_1/p,..., a_m/p}$. The automorphism with integer entries transform this set of points into itself, therefore all these points belong to periodic trajectories.

Let $w = (w_1, ..., w_m)$ be a point of a trajectory with the period $n > 1$ then

$$
T^n w = w + q,\t\t(9)
$$

へのへ

where *q* is an integer vector. The above equation with respect to *w* has nonzero determinant, therefore the components of *w* are rational. イロメ マ桐 メメモ レマモメ

 \triangleright The Kolmogorov entropy of a Anosov C-system is:

$$
h(A) = \sum_{|\lambda_{\beta}|>1} \ln |\lambda_{\beta}|. \tag{10}
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

The entropy h(A) depends on the spectrum of the operator A.

 \triangleright The Kolmogorov entropy of a Anosov C-system is:

$$
h(A) = \sum_{|\lambda_{\beta}|>1} \ln |\lambda_{\beta}|. \tag{10}
$$

へのへ

The entropy h(A) depends on the spectrum of the operator A.

 \triangleright This allows to characterise and compare the chaotic properties of dynamical C-systems quantitatively \rightarrow computing and comparing their entropies.

 \triangleright The variety and richness of the periodic trajectories of the C-systems essentially depends on entropy, the number of periodic trajectories $\pi(T)$ of a period T has the form

$$
\pi(T) \sim e^{T \; h(A)} / T \tag{11}
$$

イロメ イタメ オラメイラメ

 Ω

 \triangleright The variety and richness of the periodic trajectories of the C-systems essentially depends on entropy, the number of periodic trajectories $\pi(T)$ of a period T has the form

$$
\pi(T) \sim e^{T \; h(A)} / T \tag{11}
$$

へのへ

 \triangleright A system with larger entropy $h(A)$ is more densely populated by the periodic trajectories of the period T.

 \triangleright The variety and richness of the periodic trajectories of the C-systems essentially depends on entropy, the number of periodic trajectories $\pi(T)$ of a period T has the form

$$
\pi(T) \sim e^{T \; h(A)} / T \tag{11}
$$

- \triangleright A system with larger entropy $h(A)$ is more densely populated by the periodic trajectories of the period T.
- **If** The relaxation time $\tau(A)$ can be associated with the dynamical system

$$
\tau(A) = 1/h(A) \tag{12}
$$

and it should be smaller that the correlation time *τ* of the system under investigation

$$
\tau(A) \leq \tau \tag{13}
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

∽≏ດ

A strong instability of trajectories of a dynamical C-system leads to the apperance of statistical properties in its behaviour. As a result the time average of the function $q(w)$ on W^m

$$
\frac{1}{N} \sum_{n=0}^{N-1} g(T^n w) \tag{14}
$$

behaves as a superposition of quantities which are statistically weakly dependent. Therefore for the C-systems on a torus it was demonstrated by Leonov that the deviation of the time averages [\(14\)](#page-21-0) from the phase space averages

$$
\int_{W^m} g(w) dw \tag{15}
$$

 Ω

multiplied by \sqrt{N} have at large $N\rightarrow\infty$ the Gaussian distribution:

$$
\lim_{N \to \infty} \mu \left\{ w : \sqrt{N} \left(\frac{1}{N} \sum_{n=0}^{N-1} g(T^n w) - \int_{W^m} g(v) dv \right) < z \right\} =
$$
\n
$$
= \frac{1}{\sqrt{2\pi} \sigma_g} \int_{-\infty}^z e^{-\frac{y^2}{2\sigma_g^2}} dy.
$$

The importance of the multiplication by the factor \sqrt{N} can be understood as follows. The difference in the bracket has an upper bound in terms of the Kolmogorov discrepancy $D_N(T)$:

$$
\left| \frac{1}{N} \sum_{n=0}^{N-1} g(T^n w) - \int_{W^m} g(v) dv \right| \le C \frac{D_N(T)}{N}, \quad (16)
$$

 Ω

where C is a constant and $D_N(T)$ grows as $\sqrt{N}.$ Therefore after where C is a constant and $D_N(I)$ grows as \sqrt{N} it is bound by multiplication of the quantity in the bracket by \sqrt{N} it is bound by a constant. イロメ イ押 トラ ミトラ ミント

G. Savvidy, Demokritos Nat.Res.Cent. Athens [EU Marie Curie RISE GA-644121](#page-0-0)

The mportant result of the Bowen theorem states that

$$
\int_{W^m} f(w) d\mu(w) = \lim_{n \to \infty} \frac{1}{N_n} \sum_{w \in \Gamma_n} f(w), \tag{17}
$$

メロト メタト メミト メミト

 Ω

where Γ*ⁿ* is a set of all points on the trajectories of period *n*. The total number of points in the set Γ_n we defined earlier as N_n .

 \blacktriangleright The Anosov C-systems have very strong chaotic properties: the exponential instability of all trajectories in fact the instability is as strong as it can be in principle.

 $2Q$

イロメ イタメ オラメイラメ

 \blacktriangleright The Anosov C-systems have very strong chaotic properties: the exponential instability of all trajectories in fact the instability is as strong as it can be in principle.

 \triangleright Our aim is to study these characteristics of the C-systems and develop our earlier suggestion to use the Anosov C-systems as random number generator for Monte-Carlo simulations

へのへ

Family of operators A(N,s) parametrised by the integers N and s

$$
A(N,s) = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 2 & 1 & 1 & \dots & 1 & 1 \\ 1 & 3+s & 2 & 1 & \dots & 1 & 1 \\ 1 & 4 & 3 & 2 & \dots & 1 & 1 \\ 1 & N & N-1 & N-2 & \dots & 3 & 2 \end{pmatrix}
$$
 (18)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

へのへ

The matrix is of the size $N \times N$ Its entries are all integers $A_{ij} \in \mathbb{Z}$ $Det A = 1$ The spectrum and the value of the Kolmogorov entropy?

Eigenvalue Distribution of $A(N,s)$ and of $A^{-1}(N,s)$ all of them are lying outside of the unit circle

メロト メタト メミト メミト

É

Table : Properties of operators A(N,s) for different special *s*.

イロメ イ母メ イヨメ イヨメー

重

Table : Table of properties of the operator *A*(*N, s*) for large matrix size *N*. The third column is the value of the Kolmogorov entropy. All these generators passes tests in the BigCrush suite. For the largest of them the period approaches a million digits.

イロト イ押 トイラト

へのへ

$A(N,s,m)$

A three-parameter family of C-operators *A*(*N, s, m*), where *m* is some integer:

$$
\begin{pmatrix}\n1 & 1 & 1 & 1 & \dots & 1 & 1 \\
1 & 2 & 1 & 1 & \dots & 1 & 1 \\
1 & m+2+s & 2 & 1 & \dots & 1 & 1 \\
1 & 2m+2 & m+2 & 2 & \dots & 1 & 1 \\
1 & 3m+2 & 2m+2 & m+2 & \dots & 1 & 1 \\
1 & (N-2)m+2 & (N-3)m+2 & (N-4)m+2 & \dots & m+2 & 2\n\end{pmatrix}
$$

 \leftarrow \Box

 \leftarrow \overline{m} \rightarrow する 唐 メミト

 $2Q$

€

Table : Table of three-parameter MIXMAX generators A(N,s,m). These generators have an advantage of having a very high quality sequence for moderate and small *N*. In particular, the smallest generator we tested, $N = 8$, passes all tests in the BigCrush suite.

メロト メタト メミト メミト

The distribution of the eigenvalues of the *A*(*N, s, m*) for $N = 60$, $s = 0$, $m = 2^{52} + 1$. The spectrum represents a leaf of a large radius proportional to $\lambda_{max} \approx m$ and a very small eigenvalue at the origin $\lambda_{min} \approx m^{-N+1}$.

 $2Q$

オター・エヌ オライ

The distribution of the eigenvalues of the *A*(*N, s, m*) for $N = 120, s = 1, m = 2^{51} + 1.$

メロメ メ御 メメ ヨメメ ヨメー

重

The distribution of the eigenvalues of the *A*(*N, s, m*) for $N = 240, s = 487013230256099140, m = 2^{51} + 1.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

重

 \blacktriangleright HEPFORGE.ORG, http://mixmax.hepforge.org; http://www.inp.demokritos.gr/ savvidy/mixmax.php

4 n + 4 n +

a Bara Ba

 \blacktriangleright HEPFORGE.ORG, http://mixmax.hepforge.org; http://www.inp.demokritos.gr/ savvidy/mixmax.php

 \triangleright ROOT, Release 6.04/06 on 2015-10-13, [https:](https://root.cern.ch/doc/master/mixmax_8h_source.html) [//root.cern.ch/doc/master/mixmax_8h_source.html](https://root.cern.ch/doc/master/mixmax_8h_source.html)

4 n + 4 n +

 \blacktriangleright HEPFORGE.ORG, http://mixmax.hepforge.org; http://www.inp.demokritos.gr/ savvidy/mixmax.php

 \triangleright ROOT, Release 6.04/06 on 2015-10-13, [https:](https://root.cern.ch/doc/master/mixmax_8h_source.html) [//root.cern.ch/doc/master/mixmax_8h_source.html](https://root.cern.ch/doc/master/mixmax_8h_source.html)

 \blacktriangleright CLHEP, Release 2.3.1.1, on November 10th, 2015 <http://proj-clhep.web.cern.ch/proj-clhep/>

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

へのへ

Conclusion

Use MIXMAX for your Monte-Carlo simulations !

$$
\left| \frac{1}{N} \sum_{i=0}^{N-1} f(A^i P_0) - \int_{\Pi^{\mathfrak{D}}} f(P) dP \right| \leq Const \frac{D_N(A)}{N} \tag{19}
$$

$$
D_N(A) \sim \sqrt{N}
$$

it will provide a fast convergence!

This work was supported in part by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 644121.

Thank you!

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 & 1 \end{array} \right.$

へのへ