
RANDOM NUMBERS FOR PARTICLE
TRANSPORT MONTE CARLO:
NEW USE CASES AND REQUIREMENTS
JOHN APOSTOLAKIS, CERN

Overview

Particle / Radiation Transport Monte Carlo

Beyond one run and one thread

Requirements for fine-grained parallel transport

Update 2016

Summary

LHC & Particle Transport
LHC experiments are using running detector simulation - mainly
Geant4

around 200,000 CPU cores at any time

almost every single day of each year!

Random numbers are a vital part of particle transport Monte
Carlo

Consume 3-10% of CPU time

Any serious error (bad seeding, wrong PRNG or other) would
waste 104-106 US$ of CPU time!

Particle Transport
Used to simulate interaction in/with detectors (HEP, Medical),
facilities (accelerators), and even planet’s atmosphere

Particles undergo interactions - microscopic or ‘effective’

can create new, secondary particles (cascade = tree of
particles)

Many ‘decision’ depends on using a random number

Deciding which interaction (e.g. absorption or scattering?)

Generating a secondary particle depends on sampling value
from a probability distribution function

Needs of Particle Transport
Good statistical properties for the values

Stream of reliable, portable random numbers are critical

Large period - 30 * 106 steps/event * 1010 events/year

Low correlation for the full sub-sequence of a stream

Computing performance - is 3-10% of CPU time

but RANLUX @ Luxury Level=5 can be > 10%

it matters - so we should seek to make it < 2-3%, if possible

Reproducibility/portability between operating systems & CPU arch.

Example B
C

A

AB

A

E

E

Parallelism
Clusters: Using from O(100) to O(1000) on a site

Grids - taking part of the time of many more cores O(100,000) for
one application or one experiment

Inside one system - SIMD instructions in CPU, multiple cores
(desktop or accelerator)

Parallelism can be used at many levels of granularity

Job - different CPUs using batch processing or grid

Event parallelism - choice for multi-threading

Track parallelism - for primary tracks (or finer ?)

Job parallelism
Simulation in the Grid has used job parallelism

Typical: a job consists of 50-1000 events
(collisions)

Each job must use a separate stream of PRNG

Initial seed is pre-generated using job type & id

Full state of PRNG at start of each event may be
stored with event output (for reproducibility)

Multi-threading
One job uses many threads

multiple ‘actors’ or thread of control

share address space of a single process

constant data can be shared between threads
(significant memory savings)

Typically number of threads depends on hardware
resources - number of cores, ideal threads/core

Event parallelism

Natural evolutionary choice for MT is event
processing - chosen by Geant4

the work unit for a thread is an event

To obtain / ensure reproducibility of events, each
event must have a predefined state or seed.

Geant4 production releases included MT event
parallelism since 10.0 (Dec. 2013)

Why fine-grained parallelism?
LHC/HEP experiment must get 5-10x detector simulation from existing
resources

Today’s CPU have vector/SIMD registers & instructions output / cycle -
factor of 4-8x

Traditional HEP & PT code uses few vectors & stumbles constantly in
using modern CPUs (e.g. low intensity in instruction impact and
almost no instruction re-use)

Need to restructure algorithms to adapt to the most important element
for performance - the memory cache hierarchy

Exploring the potential of accelerator architectures (GPUs, Intel Xeon
Phi(TM))

Fine-grained parallelism -
does it change anything?

Impact

Can no longer follow 1 track (electron, photon, neutron) at a time

Must gather similar work into groups - ‘baskets’

A major revolution was and is needed - transport must be
completely reorganised from the ‘ground’ up

R&D

explored in depth by the GeantV prototype (2012-2014) ;

now in development in GeantV project (geant.cern.ch)

http://geant.cern.ch

How does it changes?
No longer ‘follow’ one particle at a time

The work is organised in vectors/baskets of particles

all particles in one type of volume

electrons in Fe (i.e. one material)

photons in PbWO4 (complex material)

Each part of work is done on all tracks in a basket - in parallel

5 or 17 photons undergo Compton in PbWO4

27 or 127 particles arriving at a volume boundary are relocated

What does this mean for PRNGs?

A larger number of concurrent PRNG streams

Minimum concurrent (current configuration):

N_threads = O(100)

In a different ‘mode’ (reproducible) the number of
concurrent PRNG is much larger:

N_PRNG = number of tracks in flight =
10^5-10^8 ?

PRNG requirements 1/2
Fast vectorised implementation

Parallelising over PRNG-streams

Excellent* statistical properties

‘no’ correlation of numbers within a stream

‘no’ correlation between streams

Efficient seeding from large integer (128-bit+ ?)

Ability to use on new hardware types: GPU, MIC

PRNG requirements 2/2

Amount of memory read & write per output number matters

Size of internal state is relevant for MT Geant4 and ‘regular’ Geant-V

Size can be a critical issue

if vector efficiency is marginal and requires copying of RNG state
to use aligned vector instructions

in the case of ‘reproducible’ mode, it contributes to total memory
footprint - it must be smaller than the size of a track (1-2 Kbytes)

Ideally internal state is of the order of one or two cache lines

Emerging ideas
To meet reproducibility of simulation

each track must use its own PRNG stream

a secondary particle must start with a unique, reproducible
number (seed)

N_streams = N(tracks in flight)

= N(baskets) * A_average_occupancy ~= 10^6-10^8 ?

Most tracks are low energy - few random numbers needed on
average per stream => initialisation time is very important!

These are ideas under development - J.A. & Sandro Wenzel

Overview - Update 2016

Particle / Radiation Transport Monte Carlo

Beyond one run and one thread

Requirements for fine-grained parallel transport

Summary

Topics
Progress - use in Geant4

Requirements for parallelism

(Re)seeding/splitting for event/track parallelism

Repeatability

CPU Performance & potential for Vectorisation

Loss of memory of initial state & de-correlation

Integration in Geant4

Geant4 uses CLHEP library

MIXMAX “1.0” included in CLHEP 2.3.1.1

Alex Howard will report some experience & issues

Requirements for
parallelism

Seeding for event parallelism

Seeding for repeatable track-level parallelism

Vectorisation
Potential of newest ‘vector’ CPUs for 4-8 size vectors
operands of 64-bit each

i) for a single stream PRNG, i.e. for a sequential
application

ii) for a multi-stream PRNG - each vector’s lane is
used for a different track

Q: Is it possible to use a different divisor (in place of 261
- 1) in order to make ‘best’ use of more vector FPUs?

‘Multi-stream’ PRNG: needs
Deal with N ‘tracks’, with N= 1 - 64 (typically)

Vectorise for N= (2,) 4, 8

Each track

produces a set of secondaries

each secondary of which must be given a new state
of the PRNG (to ensure repeatability of simulation)

can consume a different number of variates

‘Multi-stream’ PRNG
Each track consumes a different number of variates

one photon can undergo Compton, which may
need 7 variates, another may undergo photo-
absorption and need 12 variates

Since a track must not be affected by the batch in
which it is processed,

it must not ‘know’ (be affected) about the other
tracks which are being consumed

‘Multi-stream’use: implications

So either the ‘vector’ implementation of the PRNG

1. must allow different number of variates to be
consumed (while vectorised), or

2. all particles of a particular type must use the
same number of variates within a step

The competition
Traditional / existing simulation

RANLUX - with affordable LUX=3 or costly ‘5’

Merseinne twister RNG & variants

‘Modern’ Linear Congruential Generators

Fine grained simulation - large scale limit

Random123 - PRNG ‘without state’ based on
Cryptographic ‘technology’ - J. Salmon et al

Personal view
Some believe that even lower-quality PRNGs could be adequate for
particle transport

there are many interactions, many decisions, …

My view is that using a high-quality PRNG is important or even vital:

correlations in the first numbers can lead to same/similar results of
interactions and reduce quality of results

it is an important insurance policy - if we can afford it.

I agree with Fred that “we should seek the best PRNG we can afford” !

So we should seek a fast, mathematically-motivated ‘excellent’ PRNG -
and MIXMAX offers the chance to do this!

Summary / conclusion
PRNG are critical for particle transport simulation

bad choices could invalidate runs of tens of thousands or even
millions of CPU months!

Moving to small-granularity parallelism means new challenges!

A clear opportunity exists for high-quality PRNG (family)

efficient to implement, with a “small” state

vectorizable/SIMD & adaptable to GPUs (produce >10^3 streams!)

with ability to obtain very-many streams

A clear opportunity for MIXMAX !

