RANDOM NUMBERS FOR PARTICLE TRANSPORT MONTE CARLO: NEW USE CASES AND REQUIREMENTS JOHN APOSTOLAKIS, CERN #### Overview - * Particle / Radiation Transport Monte Carlo - * Beyond one run and one thread - * Requirements for fine-grained parallel transport - * Update 2016 - * Summary #### LHC & Particle Transport - * LHC experiments are using running detector simulation mainly Geant4 - * around 200,000 CPU cores at any time - * almost every single day of each year! - * Random numbers are a vital part of particle transport Monte Carlo - * Consume 3-10% of CPU time - * Any serious error (bad seeding, wrong PRNG or other) would waste 10⁴-10⁶ US\$ of CPU time! #### Particle Transport - * Used to simulate interaction in/with detectors (HEP, Medical), facilities (accelerators), and even planet's atmosphere - * Particles undergo interactions microscopic or 'effective' - * can create new, secondary particles (cascade = tree of particles) - * Many 'decision' depends on using a random number - * Deciding which interaction (e.g. absorption or scattering?) - Generating a secondary particle depends on sampling value from a probability distribution function ### Needs of Particle Transport - * Good statistical properties for the values - * Stream of reliable, portable random numbers are critical - * Large period 30 * 10⁶ steps/event * 10¹⁰ events/year - * Low correlation for the full sub-sequence of a stream - * Computing performance is 3-10% of CPU time - * but RANLUX @ Luxury Level=5 can be > 10% - * it matters so we should seek to make it < 2-3%, if possible - * Reproducibility/portability between operating systems & CPU arch. ## Example #### Parallelism - * Clusters: Using from O(100) to O(1000) on a site - * Grids taking part of the time of many more cores O(100,000) for one application or one experiment - Inside one system SIMD instructions in CPU, multiple cores (desktop or accelerator) - * Parallelism can be used at many levels of granularity - * Job different CPUs using batch processing or grid - * Event parallelism choice for multi-threading - * Track parallelism for primary tracks (or finer ?) #### Job parallelism - * Simulation in the Grid has used job parallelism - * Typical: a job consists of 50-1000 events (collisions) - * Each job must use a separate stream of PRNG - * Initial seed is pre-generated using job type & id - * Full state of PRNG at start of each event may be stored with event output (for reproducibility) ## Multi-threading - * One job uses many threads - * multiple 'actors' or thread of control - * share address space of a single process - constant data can be shared between threads (significant memory savings) - * Typically number of threads depends on hardware resources number of cores, ideal threads/core ### Event parallelism - * Natural evolutionary choice for MT is event processing - chosen by Geant4 - * the work unit for a thread is an event - * To obtain / ensure reproducibility of events, each event must have a predefined state or seed. - * Geant4 production releases included MT event parallelism since 10.0 (Dec. 2013) #### Why fine-grained parallelism? - LHC/HEP experiment must get 5-10x detector simulation from existing resources - Today's CPU have vector/SIMD registers & instructions output / cycle factor of 4-8x - * Traditional HEP & PT code uses few vectors & stumbles constantly in using modern CPUs (e.g. low intensity in instruction impact and almost no instruction re-use) - Need to restructure algorithms to adapt to the most important element for performance - the memory cache hierarchy - Exploring the potential of accelerator architectures (GPUs, Intel Xeon Phi(TM)) ## Fine-grained parallelism - does it change anything? - * Impact - * Can no longer follow 1 track (electron, photon, neutron) at a time - * Must gather similar work into groups 'baskets' - * A major **revolution** was and is needed transport must be completely reorganised from the 'ground' up - * R&D - * explored in depth by the GeantV prototype (2012-2014); - * now in development in GeantV project (geant.cern.ch) ## How does it changes? - * No longer 'follow' one particle at a time - * The work is organised in vectors/baskets of particles - * all particles in one type of volume - * electrons in Fe (i.e. one material) - * photons in PbWO4 (complex material) - * Each part of work is done on all tracks in a basket in parallel - * 5 or 17 photons undergo Compton in PbWO4 - * 27 or 127 particles arriving at a volume boundary are relocated #### What does this mean for PRNGs? - * A larger number of concurrent PRNG streams - * Minimum concurrent (current configuration): - * N_threads = O(100) - * In a different 'mode' (reproducible) the number of concurrent PRNG is much larger: - * N_PRNG = number of tracks in flight = 10^5-10^8 ? ### PRNG requirements 1/2 - * Fast vectorised implementation - * Parallelising over PRNG-streams - * Excellent* statistical properties - * 'no' correlation of numbers within a stream - * 'no' correlation between streams - * Efficient seeding from large integer (128-bit+?) - * Ability to use on new hardware types: GPU, MIC #### PRNG requirements 2/2 - * Amount of memory read & write per output number matters - * Size of internal state is relevant for MT Geant4 and 'regular' Geant-V - * Size can be a critical issue - * if vector efficiency is marginal and requires copying of RNG state to use aligned vector instructions - * in the case of 'reproducible' mode, it contributes to total memory footprint it must be smaller than the size of a track (1-2 Kbytes) - * Ideally internal state is of the order of one or two cache lines ## Emerging ideas - * To meet reproducibility of simulation - * each track must use its own PRNG stream - a secondary particle must start with a unique, reproducible number (seed) - * N_streams = N(tracks in flight) - * = N(baskets) * A_average_occupancy ~= 10^6-10^8 ? - * Most tracks are low energy few random numbers needed on average per stream => initialisation time is very important! - * These are ideas under development J.A. & Sandro Wenzel #### Overview - Update 2016 - * Particle / Radiation Transport Monte Carlo - * Beyond one run and one thread - * Requirements for fine-grained parallel transport - * Summary ## Topics - * Progress use in Geant4 - * Requirements for parallelism - * (Re)seeding/splitting for event/track parallelism - * Repeatability - * CPU Performance & potential for Vectorisation - * Loss of memory of initial state & de-correlation #### Integration in Geant4 - * Geant4 uses CLHEP library - * MIXMAX "1.0" included in CLHEP 2.3.1.1 - * Alex Howard will report some experience & issues ## Requirements for parallelism - * Seeding for event parallelism - * Seeding for repeatable track-level parallelism #### Vectorisation - * Potential of newest 'vector' CPUs for 4-8 size vectors operands of 64-bit each - * i) for a single stream PRNG, i.e. for a sequential application - * ii) for a multi-stream PRNG each vector's lane is used for a different track - * Q: Is it possible to use a different divisor (in place of 2⁶¹ - 1) in order to make 'best' use of more vector FPUs? #### 'Multi-stream' PRNG: needs - * Deal with N 'tracks', with N= 1 64 (typically) - * Vectorise for N= (2,) 4, 8 - * Each track - * produces a set of secondaries - * each secondary of which must be given a new state of the PRNG (to ensure repeatability of simulation) - * can consume a different number of variates #### 'Multi-stream' PRNG - * Each track consumes a different number of variates - * one photon can undergo Compton, which may need 7 variates, another may undergo photoabsorption and need 12 variates - * Since a track must not be affected by the batch in which it is processed, - * it must not 'know' (be affected) about the other tracks which are being consumed #### 'Multi-stream'use: implications - * So either the 'vector' implementation of the PRNG - 1. must allow different number of variates to be consumed (while vectorised), or - 2. all particles of a particular type must use the same number of variates within a step ### The competition - * Traditional / existing simulation - * RANLUX with affordable LUX=3 or costly '5' - * Merseinne twister RNG & variants - * 'Modern' Linear Congruential Generators - * Fine grained simulation large scale limit - * Random123 PRNG 'without state' based on Cryptographic 'technology' J. Salmon et al #### Personal view - * Some believe that even lower-quality PRNGs could be adequate for particle transport - * there are many interactions, many decisions, ... - * My view is that using a high-quality PRNG is important or even vital: - correlations in the first numbers can lead to same/similar results of interactions and reduce quality of results - * it is an important insurance policy if we can afford it. - * I agree with Fred that "we should seek the best PRNG we can afford"! - * So we should seek a fast, mathematically-motivated 'excellent' PRNG and MIXMAX offers the chance to do this! ### Summary / conclusion - * PRNG are critical for particle transport simulation - * bad choices could invalidate runs of tens of thousands or even millions of CPU months! - * Moving to small-granularity parallelism means new challenges! - * A clear opportunity exists for high-quality PRNG (family) - * efficient to implement, with a "small" state - * vectorizable/SIMD & adaptable to GPUs (produce >10^3 streams!) - * with ability to obtain very-many streams - * A clear opportunity for MIXMAX!