RANDOM NUMBERS FOR PARTICLE TRANSPORT MONTE CARLO: NEW USE CASES AND REQUIREMENTS

JOHN APOSTOLAKIS, CERN

Overview

- * Particle / Radiation Transport Monte Carlo
 - * Beyond one run and one thread
 - * Requirements for fine-grained parallel transport
- * Update 2016
- * Summary

LHC & Particle Transport

- * LHC experiments are using running detector simulation mainly Geant4
 - * around 200,000 CPU cores at any time
 - * almost every single day of each year!
- * Random numbers are a vital part of particle transport Monte Carlo
 - * Consume 3-10% of CPU time
 - * Any serious error (bad seeding, wrong PRNG or other) would waste 10⁴-10⁶ US\$ of CPU time!

Particle Transport

- * Used to simulate interaction in/with detectors (HEP, Medical), facilities (accelerators), and even planet's atmosphere
- * Particles undergo interactions microscopic or 'effective'
 - * can create new, secondary particles (cascade = tree of particles)
- * Many 'decision' depends on using a random number
 - * Deciding which interaction (e.g. absorption or scattering?)
 - Generating a secondary particle depends on sampling value from a probability distribution function

Needs of Particle Transport

- * Good statistical properties for the values
- * Stream of reliable, portable random numbers are critical
 - * Large period 30 * 10⁶ steps/event * 10¹⁰ events/year
 - * Low correlation for the full sub-sequence of a stream
- * Computing performance is 3-10% of CPU time
 - * but RANLUX @ Luxury Level=5 can be > 10%
 - * it matters so we should seek to make it < 2-3%, if possible
- * Reproducibility/portability between operating systems & CPU arch.

Example

Parallelism

- * Clusters: Using from O(100) to O(1000) on a site
- * Grids taking part of the time of many more cores O(100,000) for one application or one experiment
- Inside one system SIMD instructions in CPU, multiple cores (desktop or accelerator)
- * Parallelism can be used at many levels of granularity
 - * Job different CPUs using batch processing or grid
 - * Event parallelism choice for multi-threading
 - * Track parallelism for primary tracks (or finer ?)

Job parallelism

- * Simulation in the Grid has used job parallelism
- * Typical: a job consists of 50-1000 events (collisions)
- * Each job must use a separate stream of PRNG
 - * Initial seed is pre-generated using job type & id
 - * Full state of PRNG at start of each event may be stored with event output (for reproducibility)

Multi-threading

- * One job uses many threads
 - * multiple 'actors' or thread of control
 - * share address space of a single process
 - constant data can be shared between threads (significant memory savings)
- * Typically number of threads depends on hardware resources number of cores, ideal threads/core

Event parallelism

- * Natural evolutionary choice for MT is event processing - chosen by Geant4
 - * the work unit for a thread is an event
- * To obtain / ensure reproducibility of events, each event must have a predefined state or seed.
- * Geant4 production releases included MT event parallelism since 10.0 (Dec. 2013)

Why fine-grained parallelism?

- LHC/HEP experiment must get 5-10x detector simulation from existing resources
- Today's CPU have vector/SIMD registers & instructions output / cycle factor of 4-8x
- * Traditional HEP & PT code uses few vectors & stumbles constantly in using modern CPUs (e.g. low intensity in instruction impact and almost no instruction re-use)
- Need to restructure algorithms to adapt to the most important element for performance - the memory cache hierarchy
- Exploring the potential of accelerator architectures (GPUs, Intel Xeon Phi(TM))

Fine-grained parallelism - does it change anything?

- * Impact
 - * Can no longer follow 1 track (electron, photon, neutron) at a time
 - * Must gather similar work into groups 'baskets'
 - * A major **revolution** was and is needed transport must be completely reorganised from the 'ground' up
- * R&D
 - * explored in depth by the GeantV prototype (2012-2014);
 - * now in development in GeantV project (geant.cern.ch)

How does it changes?

- * No longer 'follow' one particle at a time
- * The work is organised in vectors/baskets of particles
 - * all particles in one type of volume
 - * electrons in Fe (i.e. one material)
 - * photons in PbWO4 (complex material)
- * Each part of work is done on all tracks in a basket in parallel
 - * 5 or 17 photons undergo Compton in PbWO4
 - * 27 or 127 particles arriving at a volume boundary are relocated

What does this mean for PRNGs?

- * A larger number of concurrent PRNG streams
 - * Minimum concurrent (current configuration):
 - * N_threads = O(100)
- * In a different 'mode' (reproducible) the number of concurrent PRNG is much larger:
 - * N_PRNG = number of tracks in flight = 10^5-10^8 ?

PRNG requirements 1/2

- * Fast vectorised implementation
 - * Parallelising over PRNG-streams
- * Excellent* statistical properties
 - * 'no' correlation of numbers within a stream
 - * 'no' correlation between streams
- * Efficient seeding from large integer (128-bit+?)
- * Ability to use on new hardware types: GPU, MIC

PRNG requirements 2/2

- * Amount of memory read & write per output number matters
- * Size of internal state is relevant for MT Geant4 and 'regular' Geant-V
- * Size can be a critical issue
 - * if vector efficiency is marginal and requires copying of RNG state to use aligned vector instructions
 - * in the case of 'reproducible' mode, it contributes to total memory footprint it must be smaller than the size of a track (1-2 Kbytes)
- * Ideally internal state is of the order of one or two cache lines

Emerging ideas

- * To meet reproducibility of simulation
 - * each track must use its own PRNG stream
 - a secondary particle must start with a unique, reproducible number (seed)
 - * N_streams = N(tracks in flight)
 - * = N(baskets) * A_average_occupancy ~= 10^6-10^8 ?
- * Most tracks are low energy few random numbers needed on average per stream => initialisation time is very important!
- * These are ideas under development J.A. & Sandro Wenzel

Overview - Update 2016

- * Particle / Radiation Transport Monte Carlo
- * Beyond one run and one thread
- * Requirements for fine-grained parallel transport
- * Summary

Topics

- * Progress use in Geant4
- * Requirements for parallelism
 - * (Re)seeding/splitting for event/track parallelism
 - * Repeatability
- * CPU Performance & potential for Vectorisation
- * Loss of memory of initial state & de-correlation

Integration in Geant4

- * Geant4 uses CLHEP library
 - * MIXMAX "1.0" included in CLHEP 2.3.1.1
- * Alex Howard will report some experience & issues

Requirements for parallelism

- * Seeding for event parallelism
- * Seeding for repeatable track-level parallelism

Vectorisation

- * Potential of newest 'vector' CPUs for 4-8 size vectors operands of 64-bit each
 - * i) for a single stream PRNG, i.e. for a sequential application
 - * ii) for a multi-stream PRNG each vector's lane is used for a different track
- * Q: Is it possible to use a different divisor (in place of 2⁶¹
 - 1) in order to make 'best' use of more vector FPUs?

'Multi-stream' PRNG: needs

- * Deal with N 'tracks', with N= 1 64 (typically)
- * Vectorise for N= (2,) 4, 8
- * Each track
 - * produces a set of secondaries
 - * each secondary of which must be given a new state of the PRNG (to ensure repeatability of simulation)
 - * can consume a different number of variates

'Multi-stream' PRNG

- * Each track consumes a different number of variates
 - * one photon can undergo Compton, which may need 7 variates, another may undergo photoabsorption and need 12 variates
- * Since a track must not be affected by the batch in which it is processed,
 - * it must not 'know' (be affected) about the other tracks which are being consumed

'Multi-stream'use: implications

- * So either the 'vector' implementation of the PRNG
 - 1. must allow different number of variates to be consumed (while vectorised), or
 - 2. all particles of a particular type must use the same number of variates within a step

The competition

- * Traditional / existing simulation
 - * RANLUX with affordable LUX=3 or costly '5'
 - * Merseinne twister RNG & variants
 - * 'Modern' Linear Congruential Generators
- * Fine grained simulation large scale limit
 - * Random123 PRNG 'without state' based on Cryptographic 'technology' J. Salmon et al

Personal view

- * Some believe that even lower-quality PRNGs could be adequate for particle transport
 - * there are many interactions, many decisions, ...
- * My view is that using a high-quality PRNG is important or even vital:
 - correlations in the first numbers can lead to same/similar results of interactions and reduce quality of results
 - * it is an important insurance policy if we can afford it.
- * I agree with Fred that "we should seek the best PRNG we can afford"!
- * So we should seek a fast, mathematically-motivated 'excellent' PRNG and MIXMAX offers the chance to do this!

Summary / conclusion

- * PRNG are critical for particle transport simulation
 - * bad choices could invalidate runs of tens of thousands or even millions of CPU months!
- * Moving to small-granularity parallelism means new challenges!
- * A clear opportunity exists for high-quality PRNG (family)
 - * efficient to implement, with a "small" state
 - * vectorizable/SIMD & adaptable to GPUs (produce >10^3 streams!)
 - * with ability to obtain very-many streams
- * A clear opportunity for MIXMAX!