


Mohamed V University Faculty of Sciences Rabat



# Trigger Study for WZ resonance





S. DAHBI, Y. TAYALATI (MOHAMED V UNIVERSITY RABAT)

### Introduction

- The aim of this study is to estimate the gain added by using other triggers than the single lepton trigger currently used in this analysis
- Samples:
  - mc15\_13TeV.
    302267.MadGraphPythia8EvtGen\_A14NNPDF23LO\_HVT\_Agv1\_VcWZ\_lvll\_m0600.merge.DAOD\_HIGG
    2D1.e4148\_s2608\_r6869\_r6282\_p2425\_tid08367894\_00.root
- Triggers:
  - ✓ Single-Electron triggers, Di-Electrons triggers, Tri-Electrons triggers.
  - ✓ Single-Muon triggers, Di-Muon triggers, Tri-Muon triggers.
  - ✓ Combined Electron-Muon triggers.
  - ✓ MissingEt trigger.

# Triggers

### □ Single-Electron triggers :

- HLT\_e24\_lhmedium\_L1EM18VH
- HLT\_e60\_lhmedium
- HLT\_e120\_lhloose



• HLT\_2e12\_lhloose\_L12EM10VH

#### □ Tri-Electron triggers :

• HLT\_e17\_lhloose\_2e9\_lhloose

#### □ Combined Electron-Muon triggers :

- HLT\_2e12\_lhloose\_mu10
- HLT\_e12\_lhloose\_2mu10
- HLT\_e7\_medium\_mu24
- HLT\_e17\_lhloose\_mu14
- HLT\_e24\_medium\_L1EM20VHI\_mu8noL1

#### □ Single-Muon triggers :

- HLT\_mu20\_iloose\_L1MU15
- HLT\_mu50

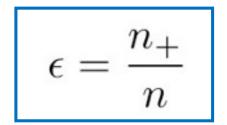
#### Di-Muon triggers :

- HLT\_2mu10
- HLT\_mu18\_mu8noL1

#### □ Tri-Muon triggers :

- HLT\_3mu6
- HLT\_3mu6\_msonly
- HLT\_mu18\_2mu4noL1

### □ MissingEt trigger :


- HLT\_xe60
- HLT\_xe70
- HLT\_xe80
- HLT\_xe100

Nominal

Triggers

### Trigger efficiency

π



*n* : number of events passing selection with out any trigger requirement.

- $n_+$ : number of events passing the selection .
- $n_{-}$ : number of events failing the selection .

• The errors in the efficiency distribution , usin binomial errors :

$$\delta \epsilon = \sqrt{\frac{n_+ n_-}{n^3}} = \sqrt{\frac{\epsilon \left(1 - \epsilon\right)}{n}}$$

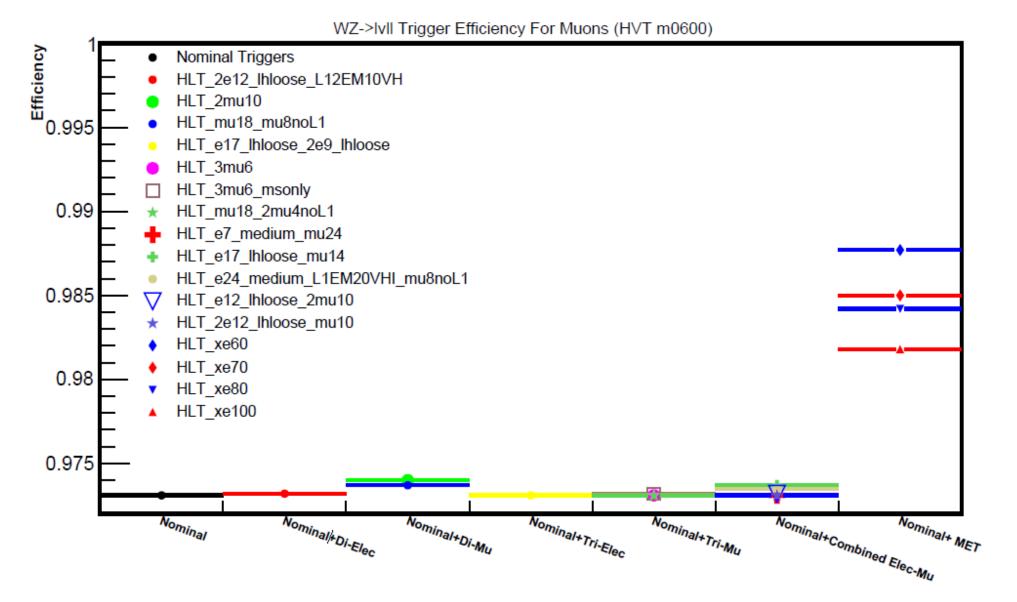
# Trigger efficiency at preselection level

### $\pi$

- Look at the lepton preselection level.
- Calculate trigger efficiency w.r.t nominal trigger selection.

#### Preselected electrons requirements

- Likelihood loose electrons (medium++ for Z and tight++ for W)
- ET>25 GeV
- Object Quality requirements
- |z0 sin(theta)| < 0.5
- $|d_0/\sigma_{d0}| < 3$
- Handled by the IsolationSelectionTool Working point is LooseTrackOnly.


#### Preselected muons requirements

- Combined muons  $|\eta| < 2.5$
- pT>25 GeV
- d0<1mm cosmic cut
- |z0 sin(theta)| < 0.5
- $|d_0/\sigma_{d0}| < 3.$
- Handled by the IsolationSelectionTool Working point is LooseTrackOnly. To be optimized

• No Z lepton pairing, W tighter requirements or MET cut applied

### Trigger efficiency in muon channel

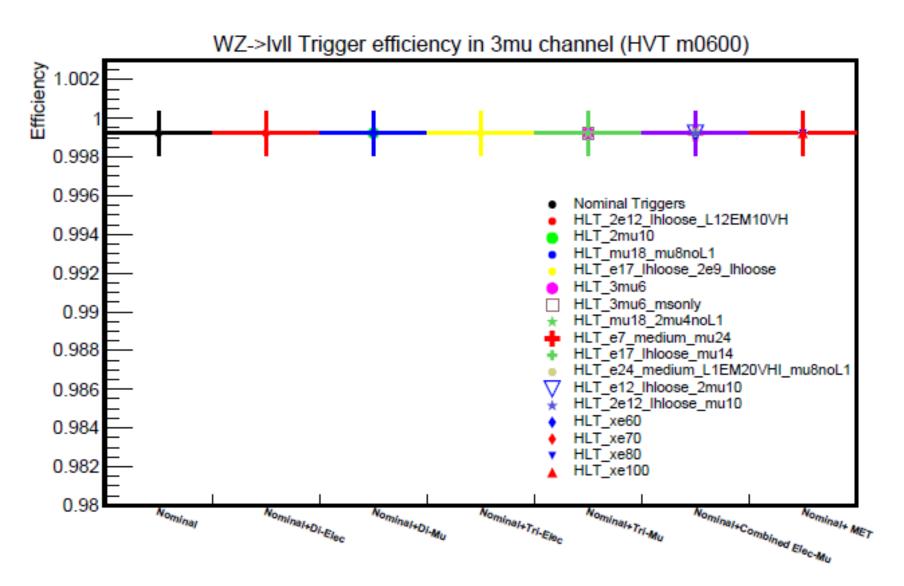
 $\mathcal{T}$ 



### Trigger efficiency in electron channel

π

WZ->IvII Trigger Efficiency For Electrons (HVT m0600)




# Trigger efficiency using final selection

- Used HVT samples (m = 600 GeV)
- Look at the final selection (no optimized cuts for signal selection applied yet). https://twiki.cern.ch/twiki/bin/view/AtlasProtected/WZIvIISearchRun2
- Calculate trigger efficiency for
  - ✓ Nominal trigger
  - ✓ Nominal triggers + adding dilepton, trilepton or MET triggers

### Trigger efficiency for 3mu Channel.

 $\pi$ 



### Trigger efficiency for others Channels.

π

WZ->IvII Trigger efficiency in 3mu channel (HVT m0600) Efficiency .002 0.998 0.996 Nominal Triggers HLT\_2e12\_lhloose\_L12EM10VH 0.994 HLT\_2mu10 HLT\_mu18\_mu8noL1 HLT e17 Ihloose 2e9 Ihloose 0.992 HLT\_3mu6 HLT 3mu6 msonly 0.99 HLT\_mu18\_2mu4noL1 HLT\_e7\_medium\_mu24 0.988 HLT\_e17\_lhloose\_mu14 HLT\_e24\_medium\_L1EM20VHI\_mu8noL1 HLT\_e12\_lhloose\_2mu10 0.986 HLT\_2e12\_lhloose\_mu10 HLT xe60 0.984 HLT\_xe70 HLT\_xe80 0.982 HLT\_xe100 0.98 Nominal+Combined Elec-Mu Nominal+Di-Elec Nominal+Tri-Elec Nominal Nominal+Di-Mu Nominal+Tri-Mu Nominal+ MET

## <u>Summary</u>

- By looking at the HVT signal at the lepton preselection level less 1% gain by MET , dilepton or Trilepton triggers , no effect at all if we look at final WZ selection.
- Using the single lepton triggers for HVT signals of (m=600 GeV) we have an efficiency of ~99%
- Not evident gain in signal by adding MET , dilepton or Trilepton triggers to our final HVT selection.