Expected Performance of LHC HL Transverse Feedback

Wolfgang Hofle

Acknowledgement G. Kotzian, D. Valuch, K. Li ADT power team (BE-RF-PM), software (BE-RF-CS section, OP group) BE-BI, BE-CO, BE-ABP

Outline

- Run 2 and ongoing improvements of ADT
- Key performances
 - Kick strength
 - Signal-to-Noise ratio
 - Bandwidth and damping time
- Conclusions

ADT – Run 2

- Power System (bandwidth and kick strength)

 Maintenance of power amplifiers, no changes in LS1
- Pick-up System
 - Additional pick-ups cabled and available (2x)
- Electronics (LLRF)
 - New processing VME electronics
 - Capable of combining four pick-ups per plane and beam
 - Disentangled gain functions for feedback (main/witness bunches), cleaning and blow-up (four functions) available
 - New A/D converters and processing of analogue PU signals
 - In preparation \rightarrow potential to improve S/N
 - Tested on one of the additional pick-ups (D.V.)

ADT – Run 2

see G. Kotzian @ Evian 2015

- Algorithms (also define gain versus frequency)
 - Potential improvements for feedback (vector sum)
 - Diagnostics (head tail movement mode 1)
 - Automated set-up and check of damping time
- Obs Box for data recording and LIST instability network
 - Extendable, under exploitation

Additional Pick-ups

- Will become gradually available
- Improved performance of electronics (S/N)
- More degrees of freedom for algorithms (robustness to tune changes)

B1 horizontal	Q10L	Q9L	Q8L	Q7L	Q7R	Q8R	Q9R	Q10R
		β = 111 m		β = 106 m		β = 133 m		β = 153 m
		existing		existing		new		new
	Q10L	Q9L	Q8L		Q7R	Q8R	Q9R	Q10R
B1 vertical	Q10L β = 175 m	Q9L	Q8L β = 155 m		Q7R β = 161 m	Q8R	Q9R β = 142 m	Q10R

B2 horizontal	Q10L	Q9L	Q8L		Q7R	Q8R	Q9R	Q10R
	β = 158 m		β = 96 m		β = 150 m		β = 101 m	
	new		new		existing		existing	
	Q10L	Q9L	Q8L	Q7L	Q7R	Q8R	Q9R	Q10R
B2 vertical	Q10L	Q9L β = 160 m	Q8L	Q7L β = 167 m	Q7R	Q8R β = 151 m	Q9R	Q10R β = 180 m

WP2 Meeting - LHC HL TFB (ADT)

Processing Electronics

- VME based, FESA 3
- HL-LHC: Jointly drive with CO / BI migration to new plat-form, post VME
 - Considered a "consolidation"
 - Increased controllability and accessibility to data expected

ADT Key Performance

• Maximum kick strength \rightarrow 2 µrad @450 GeV

- Given by max operating voltage (12 kV) and current of the tetrode amplifier system and the need to change voltage for injection damping in the kicker gap
- Needed for injection damping & cleaning
- Regular change of tetrodes needed to maintain peak kick strength (32 tetrodes in operation)
 - Lifetime of tetrode (2-3 years under current operating conditions)
 - Consider R&D for replacement before 2035 if indications that tetrode system becomes obsolete → needs study
- Impact on beam can be improved by higher beta function at kickers (ATS optics ?) if needed
- As kick strength sufficient additional kickers of the same kind not needed

Original Layout

ADT Key Performance

- Signal to noise ratio
 - defines smallest amplitude oscillation that can be detected
 - can lead to blow-up
 - potentially more critical for HL LHC with increased tune spread and operation with crab cavities
 - Experience to be gained in SPS for concurrent
 Operation of transverse feedback and crab cavities
 - Presently beam rms 2 μm observed with ADT at β ~150 m

→ target: improvement for high lumi era by a factor two to four (benchmark method to be defined)

ADT key Performance

- Bandwidth (linked to damping time vs. frequency)
 - Power system adapted to a resistive wall impedance that rolls-off with frequency
 - Flat frequency response and faster rise-time possible by pre-distortion of drive signal
 - implemented in digital processing
 - used operationally in Run 1 and Run 2
 - at expense of max kick strength
 - impact on blow-up in stable beams seen in run 1
 - Present system not optimally adapted to "popcorn" instability (one bunch going unstable)
 - Damping effect to internal modes with dipolar moment shown in simulation

Bandwidth – Power System

Bandwidth - Enhanced

23 August 2016

WP2 Meeting - LHC HL TFB (ADT)

Bandwidth – Injection Damping

- Performance (examples) w/o bandwidth enhancement
 - Risk of control instability if damping times pushed below 10 turns

Bandwidth - Instability

LMC, 30.05.2012

5x Gain needed to cure single bunch instability at edge of batch7 to 8x Gain needed for case of bunch well inside batch

WP2 Meeting - LHC HL TFB (ADT)

HL-LHC Bandwidth - Summary

- Injection damping with 10 turns possible
- Expect slower damping for kicker ripple and on edges
 - can make damping equal for all bunches, but at expense of damping time, 40 turns more realistic in this case
- Popcorn instability and intra bunch motion (when dipolar movement present) can be damped by present feedback but higher bandwidth desirable as effective gain is low

Conclusions

- Three possible directions of performance improvement
 - Bandwidth is critical and HL may profit a lot from a new kicker system
 - Signal-to-Noise is critical with operation with crab cavities, potential for improvement exists
 - Kick Strength is considered sufficient
- Consolidation and Obsolescence (\rightarrow 2035)
 - Power system (tetrodes ?)
 - Electronics (plat-form beyond VME)