Saturation scale fluctuations and multiparticle rapidity correlations

Adam Bzdak

AGH University of Science and Technology, Kraków

AB, K. Dusling, PRC 93 (2016) 031901; PRC 94 (2016) 044918 AB, P. Bożek, PRC 93 (2016) 024903 AB, D. Teaney, PRC 87 (2013) 024906

Outline

motivation

- longitudinal fluctuations and correlations
- CGC application
- conclusions

p+p is **not** symmetric in rapidity, it is more like p+A The shape of the fireball fluctuates in rapidity

Transvers fluctuations and correlations For example:

B. Alver, G. Roland, PRC 81 (2010) 054905

 $C_2(\Delta \varphi) \sim \cos(3\Delta \varphi) \qquad \Delta \varphi = \varphi_1 - \varphi_2$

 φ – azimuthal angle

New source of rapidity correlations

AB, D. Teaney, PRC 87 (2013) 024906

$$\rho_{\text{event}}(y) = \langle \rho(y) \rangle \left[1 + \frac{a_0}{a_0} + \frac{a_1}{Y} + \cdots \right]$$

single particle distribution in an event (neglecting statistical fluctuations) average single particle distribution

a₀ is rapidity independent fluctuation of fireball as a whole multiplicity distribution

a_1 is an event-by-event rapidity asymmetry

e.g. asymmetry in the number of left- and right-going constituents (nucleons, quarks, diquarks, etc.) in p+p, p+A and A+A

Y - measurement is from -Y to Y

A.Bialas, AB, K.Zalewski, PLB 710 (2012) 332

Fireball shape in rapidity can fluctuate

So let's expand in the orthogonal polynomials

Long (and short) range rapidity correlations

AB, D. Teaney, PRC 87 (2013) 024906

$$\rho_{\text{event}}(y) = \langle \rho(y) \rangle \begin{bmatrix} 1 + \sum_{i=0}^{a_i} T_i(y/Y) \end{bmatrix}$$

orthogonal polynomials
$$\frac{C_2(y_1, y_2)}{\langle \rho(y_1) \rangle \langle \rho(y_2) \rangle} = \sum_{i,k} \langle a_i a_k \rangle T_i(y_1/Y) T_k(y_2/Y)$$

$$\frac{C_2(y_1, y_2)}{\langle \rho(y_1) \rangle \langle \rho(y_2) \rangle} \sim \langle a_0^2 \rangle + \langle a_1^2 \rangle \frac{y_1 y_2}{Y^2} + \cdots$$

The ATLAS Collaboration

Abstract

Two-particle pseudorapidity correlations are measured in $\sqrt{s_{\rm NN}} = 2.76$ TeV Pb+Pb, $\sqrt{s_{\rm NN}} = 5.02$ TeV p+Pb, and $\sqrt{s} = 13$ TeV pp collisions at the LHC, with total integrated luminosities of approximately 7 μb^{-1} , 28 nb⁻¹, and 65 nb⁻¹, respectively. The correlation function $C_N(\eta_1, \eta_2)$ is measured as a function of event multiplicity using charged particles in the pseudorapidity range $|\eta| < 2.4$. The correlation function contains a significant shortrange component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by $1 + \langle a_1^2 \rangle \eta_1 \eta_2$ in all collision systems over the full multiplicity range. The values of $\sqrt{\langle a_1^2 \rangle}$ are consistent between the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of $\sqrt{\langle a_1^2 \rangle}$ and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The η distribution of the short-range component, after symmetrizing the proton and lead directions in p+Pbcollisions, is found to be smaller than that in *pp* collisions with comparable multiplicity.

 a_1 as a function of the number of produced particles in $|\eta| < 2.4$. Short-range correlations are removed (?)

new ATLAS results, arXiv:1606.08170

see also J.Jia, S.Radhakrishnan and M.Zhou, PRC 93, 044905 (2016) for more practical discussion

hydro calculations

P.Bożek, W.Broniowski, A.Olszewski, PRC 92 (2015) 5, 054913 A.Monnai, B.Schenke, PLB 752 (2016) 317

3-D Glasma calculation

B.Schenke, S.Schlichting, PRC 94, 044907 (2016)

sensitivity of $\langle a_1^2 \rangle$ to string length fluctuations

P.Bożek, W.Broniowski, PRC 93, 064910 (2016)

For example the genuine 4 and 6-particle correlation functions

$$\frac{C_4(y_1,\ldots,y_4)}{\langle \rho(y_1)\rangle \ldots \langle \rho(y_4)\rangle} = \dots + \left[\langle a_1^4 \rangle - 3 \langle a_1^2 \rangle^2 \right] \frac{y_1 y_2 y_3 y_4}{Y^4} + \dots$$

$$\frac{C_6}{\langle \rho \rangle \dots \langle \rho \rangle} = \dots + \left[\langle a_1^6 \rangle - 15 \langle a_1^2 \rangle \langle a_1^4 \rangle - 10 \langle a_1^3 \rangle^2 + 30 \langle a_1^2 \rangle^3 \right]$$
$$\frac{y_1 y_2 y_3 y_4 y_5 y_6}{Y^6} + \dots$$

I denote these coefficients by $\langle a_1^4 \rangle_{[4]}$ and $\langle a_1^6 \rangle_{[6]}$

CGC application

CGC application

AB, K. Dusling, PRC 93, 031901 (2016)

AB, K. Dusling, PRC 93 (2016) 031901

See also:

L.McLerran, M.Praszalowicz, Annals Phys. 372 (2016) 215 L.McLerran, P.Tribedy, NPA 945 (2016) 216

n=2 (b) 10 n=6n=8 1/n [n] 1 λ^{-1} 0.01 1 1.2 1.4 0.6 0.8 0.2 0.4 0 σ $\langle a_1^n \rangle = \frac{\left[\lambda \sigma \sqrt{\pi} \exp\left(\frac{\sigma^2 (n-2)}{4}\right)\right]^n}{\sqrt{\pi}} \frac{n! U\left(\frac{1+n}{2}; \frac{1}{2}; \frac{n^2 \sigma^2}{4}\right)}{\left[\sqrt{\pi} (\sigma^2 - 2) \operatorname{Erfc}\left(\frac{\sigma}{2}\right) - 2\sigma \exp\left(-\frac{\sigma^2}{4}\right)\right]^n}$

U – confluent hypergeometric function Erfc – complementary error function

AB, K. Dusling, PRC 94, 044918 (2016)

Proton as a set of domains in which Q_s fluctuate independently

Superposition of independent log-normal distributions can be approximated by log-normal

$$\sigma^2 = \ln\left[\frac{1}{N_{\rm d}}\left(e^{\sigma_{\rm d}^2} - 1\right) + 1\right]$$

 N_d - number of domains

mb – minimum bias

Conclusions

Systematic approach to longitudinal dynamics

Decomposition of multi-particle correlations into orthogonal polynomials

New source of long-range rapidity correlations

ATLAS sees asymmetric term, interesting scaling for p+p, p+Pb and Pb+Pb

It helps to pin-down the width of Gaussian fluctuations of the logarithm of the saturation scale

Predictions for multi-particle correlations

Backup

ATLAS results for $\langle a_n a_m \rangle$

Multi-particle correlation functions

 $C_2(y_1, y_2) = \rho_2(y_1, y_2) - \rho(y_1)\rho(y_2)$

$$\rho_3(y_1, y_2, y_3) = \rho(y_1)\rho(y_2)\rho(y_3) + \rho(y_1)C_2(y_2, y_3) + \rho(y_2)C_2(y_1, y_3) + \rho(y_3)C_2(y_1, y_2) + C_3(y_1, y_2, y_3),$$

$$\rho_{4}(y_{1}, y_{2}, y_{3}, y_{4}) = \rho(y_{1})\rho(y_{2})\rho(y_{3})\rho(y_{4}) + \rho(y_{1})\rho(y_{2})C_{2}(y_{3}, y_{4}) + \rho(y_{1})\rho(y_{3})C_{2}(y_{2}, y_{4}) + \rho(y_{1})\rho(y_{3})C_{2}(y_{2}, y_{3}) + \rho(y_{1})\rho(y_{4})C_{2}(y_{2}, y_{3}) + \rho(y_{2})\rho(y_{3})C_{2}(y_{1}, y_{2}) + \rho(y_{1})C_{3}(y_{2}, y_{3}, y_{4}) + \rho(y_{2})C_{3}(y_{1}, y_{3}, y_{4}) + \rho(y_{3})C_{3}(y_{1}, y_{2}, y_{4}) + \rho(y_{4})C_{3}(y_{1}, y_{2}, y_{3}) + C_{2}(y_{1}, y_{2})C_{2}(y_{3}, y_{4}) + C_{2}(y_{1}, y_{3})C_{2}(y_{2}, y_{4}) + C_{2}(y_{1}, y_{4})C_{2}(y_{2}, y_{3}) + C_{4}(y_{1}, y_{2}, y_{3}, y_{4}).$$

$$\rho_{5} = \rho\rho\rho\rho\rho + \underbrace{\rho C_{4}}_{5} + \underbrace{\rho\rho C_{3}}_{10} + \underbrace{\rho\rho\rho C_{2}}_{10} + \underbrace{\rho C_{2}C_{2}}_{15} + \underbrace{C_{2}C_{3}}_{10} + C_{5}$$

$$\rho_{6} = \rho\rho\rho\rho\rho\rho + \underbrace{\rho C_{5}}_{6} + \underbrace{\rho\rho C_{4}}_{15} + \underbrace{\rho\rho\rho C_{3}}_{20} + \underbrace{\rho\rho\rho\rho C_{2}}_{15} + \underbrace{\rho C_{2}C_{3}}_{60} + \underbrace{\rho\rho C_{2}C_{2}}_{45} + \underbrace{C_{2}C_{4}}_{15} + \underbrace{C_{3}C_{3}}_{10} + \underbrace{C_{2}C_{2}C_{2}}_{15} + C_{6},$$

In general

$$C_2(\Delta \varphi) \sim \sum_{n=1}^{\infty} \langle v_n^2 \rangle \cos(n \Delta \varphi)$$

We also have multi-particle correlations

$$C_4 \sim \langle v_n^4 \rangle \cos(n[\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4])$$
$$C_6 \sim \langle v_n^6 \rangle \cos(n[\varphi_1 + \varphi_2 + \varphi_3 - \varphi_4 - \varphi_5 - \varphi_6])$$

N. Borghini, P.M. Dinh, J.-Y. Ollitrault, PRC 63 (2001) 054906 Two-source model

 a_1 could be driven by asymmetry in the number of left- and right-going constituents (nucleons, quarks, diquarks, etc.)

$$a_1 \sim w_L - w_R$$

AB, D. Teaney, PRC 87 (2013) 024906

 $w_{L(R)}$ – left (right) moving wounded nucleons

We conclude that $\sigma \sim 0.5 - 1$

$$P[\rho] = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\rho^2}{2\sigma^2}\right] \quad \text{where} \quad \rho \equiv \log\left(\frac{Q^2}{\bar{Q}^2}\right)$$

Tails of multiplicity distributions are effected

L. McLerran, P. Tribedy, NPA 945 (2016) 216

Figure 6: Multiplicity dependence on pseudo-rapidity η for the fluctuating case with $\sigma = 1.55$. Left plot corresponds to ATLAS whereas the right one to ALICE. Different curves correspond to the centrality classes defined in Tables 1 and 2.

L.McLerran, M.Praszalowicz, Annals Phys. 372 (2016) 215

CGC in asymmetric systems, two scales

