

In-medium modifications of properties of near-threshold kaons in wide range of phase space with FOPI

Krzysztof Piasecki

Institute of Experimental Physics, University of Warsaw

K. Piasecki (FOPI)

ACULTY OF PH

WARSAW

Probing partial restoration of chiral symmetry

K. Piasecki (FOPI)

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

In-medium modifications via K-/K*

Experimental status a decade ago

Effect itself appears to be confirmed...

... but probed within very narrow slice of phase space

Statistics too limited for providing uncertainties of extracted $U_{\rm KN}$.

In-medium modifications via Flow

$$\frac{dN}{d\phi} \sim 1 + 2v_1 \cos\phi + 2v_2 \cos(2\phi) + \dots$$

 v_1 , v_2 = Coefficients of Fourier expansion

Experimental status a decade agoFOPI analysis:

 v_1 (K⁺) as function of p_{τ} for 2 systems at 1.5 – 2A GeV

Preference for $U_{\rm K+N} \approx 20 \, {\rm MeV}$ No information on $U_{\rm K-N}$

KaoS analysis:

Fit to $dN/d\phi$ (K⁺) for 2 systems at 1 – 2A GeV

Preference for U_{K+N} No information on U_{K-N}

A decade ago the ϕ/K^- ratio @ SIS energies was not known

FOPI experimental setup

20

v [cm/ns]

10

• Nearly 4π coverage

- Drift chambers: CDC, Helitron
 - ToF : Plastic Barrel, RPC Forward: Plastic Wall, Zero Degree
- Direct PID of π^{\pm} , K[±], p, d, t, ^{3,4}He

K. Piasecki (FOPI)

0.25

Ο

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

10

30

In-medium modifications via Flow: what's new?

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

K. Piasecki (FOPI)

Flow of K⁺ and K[−] from Ni+Ni @ 1.9A GeV

 v_1 : Rather weak $U_{\kappa+N}$ potential. Preference for $U_{\rm K-N} \approx 30-50$ MeV.

V. Zinyuk et al., Phys. Rev. C90, 025210 (2014)

In-medium modifications via Flow: what's new?

Flow of K^+ and K^- from Ni+Ni @ 1.9A GeV, cont.

 v_2 : first results od rapidity scan,

but predicted sensitivity to $U_{\rm KN}$ too weak, compared to experimental results

In-medium modifications via K⁻/K⁺ : what's new?

F

Ratio of K⁻ over K⁺ from Ni+Ni @ 1.9A GeV, centrality 56%

Contribution of ϕ decays to K⁻

 ϕ mesons from AA collisions @ 1.9A GeV

- Measured in K⁺K⁻ decay channel (BR=50%) Found in 3 systems (small samples).
- $\phi/K^{-} = 0.36 \pm 0.05$ Since BR ($\phi \rightarrow K^{+}K^{-}$) = 50%,
- About 18% K⁻ originates from

 φ meson decays,
 occuring mostly outside medium.
- Energy spectra of ϕ mesons reconstructed and fitted in 2 cases.

 $\mathsf{K}^{\scriptscriptstyle-}$ from φ meson decays: "colder" than these emitted directly from collision zone.

No data on θ anisotropy (low statistics)

One can subtract contribution from K⁻ spectra, and obtain K⁻/K⁺ of particles solely from the medium

Summary

Within last decade a new generation of $K^{+,-}$ measurements was performed thanks to the installation of high resolution ToF detector.

- Directed and elliptic flow of K⁺, and K⁻ across (y, p_{τ}) compared to HSD, IQMD models.
 - In-medium potentials: K⁺ weak, K⁻ moderate.
- \square K⁻/K⁺ ratio: wide scan of phase space ⊕ φ meson yield → about 18% of K⁻ originate from decays of φ.
 - Ready for extraction of in-medium potentials via comparison to transport model predictions.
 - New data on Ru+Ru @ 1.65A GeV : analysis has started.....

Thank You!

Backup slides

If primary:

C+C

10

10⁻⁸

For pA
$$\rightarrow$$
 KX: $MUL_{K} = \frac{\sigma_{K}}{\sigma_{inelastic}} = const$
AA \rightarrow KX: Glauber: AA = A \otimes NA
 $\Rightarrow MUL_{K}^{AA} = A \times MUL_{K}^{pA} \propto A$
10⁻⁴
K⁺, 1.5 AGeV
 $\gamma = 1.32 \pm 0.06$
 $\gamma = 1.44 \pm 0.08$
 $\gamma = 1.32 \pm 0.06$
 $\gamma = 1.44 \pm 0.08$
 $\gamma = 1.60 \pm 0.10$
K⁺, 0.8 AGeV
 $\gamma = 1.31 \pm 0.11$
 $\gamma = 1.31 \pm 0.11$

K⁺⁰ near-threshold production processes:

- N_{beam} + N_{target}, N_{target} has Fermi motion
- predominantly via ΔN , $\Delta \Delta \rightarrow K^{+,0} Y B$ πN , $\pi \Delta \rightarrow K^{+,0} Y Y = [\Lambda, \Sigma]$
- U_{KN} involved (increases K mass \rightarrow lower yields)

 10^{2}

Ni+Ni

Δ

Ŕ

Au+Au

K-/K⁺ : experiment vs transport

- K⁺: U_{KN} repulsive
 K⁻: U_{KN} ~attractive
 K⁻/K⁺: promising observable
- IQMD transport code • $m_{K\pm}(\rho) = m_{K\pm}(\rho_0) \cdot \left(1 + \alpha_{\pm} \cdot \frac{\rho}{\rho_0}\right)$
- ° at $\rho = \rho_0$ $\Delta m_{K^+} = 40$ MeV, $\Delta m_{K^-} = -100$ MeV
- HSD transport code
- K⁺ as in IQMD
- ° K⁻ : off-shell G-matrix approach

- Clear preference for $U_{KN} \neq 0$ option
- " U_{K+} only" scenario : insufficient
- IQMD: potentials used probably too strong

K. Piasecki (FOPI)

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

2-source model of ϕ emission

K. Piasecki (FOPI) XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

2-source model of ϕ emission

P. Gasik, Ph. D. (IFD UW), draft in preparation

K. Piasecki (FOPI) XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

KP et al., Phys. Rev. C 91, 054904 (2015)

1

In-medium modifications of K^{+/0} at $\rho < \rho_0$

M. Kotulla et al., Physik Journal 8 (2009) 3

400

K. Piasecki (FOPI)

10

5

0

0

CBUU

code

transport

Ratio(Au/C)

ANKE

200

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

Modifications of K⁰ in AA collisions

Effect of ϕ decays on K⁻ slopes

Strangeness production and absorption

	K+	K-	φ
Production	BB → BYK ⁺	BB → BBK ⁺ K ⁻	$BB \to BB\phi$
(primary)	$T_{pp \rightarrow p \wedge K+} = 1.58 \text{ GeV}$	$T_{pp \rightarrow ppK+K-} = 2.5 \text{ GeV}$	$T_{pp \rightarrow ppK+K-} = 2.6 \text{ GeV}$
Production	$\pi B \rightarrow Y K^+$	$\pi Y \rightarrow (\Sigma^* \rightarrow) BK^-$	$\pi B \rightarrow B \phi$
(secondary)		$BY \rightarrow NK^{-}\Lambda$	$\rho B \rightarrow B \phi$
		BY → BBK ⁻	$\pi N^{\star} \rightarrow N \varphi$
		$\pi B \rightarrow B K^+ K^-$	$\rho\pi \rightarrow \phi$
		φ → K ⁺ K ⁻	K⁺K⁻ → <i>φ</i> <u>negligible</u>
Absorption	$K^+Y \rightarrow \pi B$	$K^-B \rightarrow \pi Y$	$\phi N \rightarrow K \Lambda$
Elastic scat.	$K^*B \leftrightarrow K^*B$	$K^{-}B \leftrightarrow K^{-}B$	$\varphi N \ \rightarrow \ \varphi N$
(char. exch.)	K⁺n ↔ K⁰ p	K⁻p ↔ K̄⁰n	

Yields fromNi + Ni (1.93 GeV)
$$B + B$$
 3.5×10^{-4} $\pi + B$ 2.9×10^{-4} $\rho + B$ 8.9×10^{-4} $\pi + \rho$ 1.6×10^{-4} $\pi + N(1520)$ 0.5×10^{-4} Total yield 1.7×10^{-3} H.W. Barz et al. (BUU) ,
Nucl. Phys. A 705 (2002) 223

C.B. Dover, G.E. Walker Phys. Rep. **89** (1982) 1

 $[B] = p, n, N, N^*, \Delta$ $[Y] = \Lambda, \Sigma$

• BUU calculations for Ni+Ni @ 1.93A GeV, 9% most central collisions

	ø	production	channels:
--	---	------------	-----------

$$\mathsf{BB} \rightarrow \phi \ , \ \mathsf{B} = \{\mathsf{N}, \Delta\}$$

$$\mu B \rightarrow \phi$$
, $\mu = \{\pi, \rho\}$

 $\pi \rho \rightarrow \phi$

 $\mathsf{K}^{\scriptscriptstyle +}\mathsf{K}^{\scriptscriptstyle -} \to \ \varphi \quad \text{negligible}$

Yields from	Ni + Ni (1.93 GeV)		
B + B	3.5×10^{-4}		
$\pi + B$	2.9×10^{-4}		
$\rho + B$	8.9×10^{-4}		
$\pi + \rho$	1.6×10^{-4}		
$\pi + N(1520)$	0.5×10^{-4}		
Total yield	1.7×10^{-3}		
H.W. Barz et al. (BUU) , Nucl. Phys. A 705 (2002) 223			

K. Piasecki (FOPI)

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

ϕ yield compared to K⁻

K. Piasecki (FOPI)

XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

Excitation function of ϕ inverse slopes

Sub- and near-threshold Production of K⁻

Particle yields vs Statistical Model and UrQMD

- Al+Al : 8 independent ratios involving p, d, π^- , K⁺, K⁻, K⁰_s, ϕ , K^{*0}, $\Sigma^{*\pm}$, A
- Ni+Ni : 8 independent ratios involving
 p, d, π⁺, π⁻, K⁺, K⁻, K⁰_s, φ, Λ

Statistical Model

- \rightarrow Grand Canonical ensemble;
- \rightarrow For S≠0, Canonical ensemble
- → calc: THERMUS code S.Wheaton, J.Cleymans , hep-ph/0407175
 - SM fitting quite well

UrQMD v 2.3

- \rightarrow No equilibration assumed
- → Cascade model no mean field
 no in-medium effects
- \rightarrow J. Phys. G: Nucl. Part. Phys. 25 (1999) 1859
 - UrQMD fits quite well too

K. Piasecki (FOPI) XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016

B. Back et al. (E917), Phys. Rev. C 69, 054901 (2004)

ϕ/K^{-} within the statistical model approach

K. Piasecki (FOPI) XII Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 04.11.2016