Subdiffusion in a system with a thin membrane

Tadeusz Kosztotowicz

Institute of Physics, Jana Kochanowski University
ul. Swietokrzyska 15, 25-406 Kielce, Poland

tadeusz.kosztolowicz@ujk.edu.pl

Xl Polish Workshop on Relativistic Heavy-lon Collisions
4-6 November 2016
Institute of Physics, Jan Kochanowski University in Kielce



Subdiffusion in a membrane system
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© Anomalous diffusion
@ How to measure subdiffusion parameters

© Subdiffusion and slow subdiffusion in a system with a thin
membrane - new boundary conditions at thin membrane

@ Normal diffusion in a membrane system as a long memory
process: theory + experimental verification




Diffusion

—
—® @ ® - —
0 X, X, x
o(t-1) Mx-x1)

(N(x)) < o0 (N(x) < o0 (N(x)) = 00

{w(t)) < oo (w(t)) = o0 (w(t)) <o
normal diffusion subdiffusion superdiffusion

aC _ pod’C aC _ p o= ¢ oC _ p,oFc

ot — Zox? ot — Pagil-a px2 ot — B oxB

A(x) ~ eX /20 Ax) ~ e /20 A6 ~ ()

x| >0,1<B8<2
w(t) ~ e t/7 w~ (F)7 e 0<a< w(t) ~ e~ t/T

Mean square displacement (x(t)) for subdiffusion

5 2D, o
X(t) = ——2 %, for 0<a<l1,
where b)) r1l+a)

@ D, — subdiffusion coefficient, @ [(z) - Gamma function.




G(x1:0)

~ D =10°, =500 —!
2,54 = 0,8
—05
2,0 4
1,54
10 -
0,5
U,U-——/ \\_'_v
£ -2 0 2 4
x
1 (x—x, )2
G(x,t;x,))= ———exp| ——2~ =)
(t5%) 2-/nDt ‘{ 4Dt J a=1
1,
= Gt
G(x,t5x,)= H] —(x x,)'
(t5%) X, “[( Dt 1 a/2 il




Normal diffusion

(1) = [5° Tw(r)dT < 00
@(s)=1-—us,

Subdiffusion

(1) = [y° mPw(T)dT = 00 for p >, 0 < a < 1, and (77) < oo for p < «

o(s)=1—ps*,0<a<l,

Slow subdiffusion

() = oo for p > 0

@(s) =1— pv(s);
v(s) is a slowly varying function v(as)/v(s) — 1, a > 0, and v(s) — 0 when
s— 0",
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How to Measure Subdiffusion Parameters

T. Kosztolowicz,' K. Dworecki,' and St. Mré»\'czyliski“l
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We propose a method to measure the subdiffusion parameter & and subdiffusion coefficient D, which
are defined by means of the relation (x*) = %“;I“. where (x*) denotes a mean square displacement of a
random walker starting from x = 0 at the initial time 7 = 0. The method exploits a membrane system
where a substance of interest is transported in a solvent from one vessel to another across a thin membrane
which plays here only an auxiliary role. We experimentally study a diffusion of glucose and sucrose in a
gel solvent, and we precisely determine the parameters & and D,,, using a fully analytic solution of the
fractional subdiffusion equation.
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FIG. 1. Schematic view of the membrane system under study.
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Fitting the experimental &(r) by the function As?. we
have found the index o = 2y = 0.90 * 0.01. It does not
much differ from unity, but it signals subdiffusion due to
the small error [5]. With the numerical values of inverse
Fox functions. we recalculate the coefficient A into D, by
means of the relation (16). Thus, we get Dggp = (9.8 =
1.0) X 1074 [mm?/s%9°] for glucose and Dy = (6.3 =
0.9) X 107* [mm?2/s*°] for sucrose.
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FIG. 2. The experimentally measured thickness of the near-
membrane layer § as a function of time ¢ for glucose with k =
0.05 (O), k = 0.08 (O), k = 0.12 (A), and for sucrose with k =
0.08 (). The solid lines represent the power function A%,
while the dotted lines correspond to the function A+/z.
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FIG. 3. The experimentally measured & divided by the coeffi-

cient A from Eq. (15). The symbols are assigned as in Fig. 2 and
the line represents the function #**°. For clarity of the plot the



Continuous Time Random Walk
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both 7 = t; — tp and € = x» — x; are random variables

7 is a random variable, € is a small parameter, x = em




The simplest model of random walk in a membrane system

14,2

1- /ZA’&/\
() 73
1/2 1/2 k\qﬁi(l )2
AN A 12 %

.
T

ml m  mil N1 N | Nt N2

Pry1(m; mg) = %Pn(m —1; mo) + %Pn(m—i— 1;me), m#N,N+1,

2

1
Pasa(N; mo) = = Pa(N — 1; mo) + % p,(N + 1; mo) + %PH(N; mo) ,

1

— 1
Pria(N +1;mo) = == 9 p,(N; mo) + 5 Pa(N +2; mo) + %PH(N +1;mo)




[l version

The method

1. From discrete time n to continuous time t:
since @&(0) = 1 we suppose for small s

o(s) = /O T ettt = 1 — pv(s),

v(s) = 0 when s — 0
2. From discrete position m to continuous space variable x = em




Laplace transforms of the Green's functions
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1, 2 — reflection membrane coefficients for continuous system



Boundary condition at a thin membrane in terms of
Laplace transform
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Boundary condition for normal diffusion, v(s) = s

7 1 0Y2Py(xn, t; x0)
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Solutions to normal diffusion equation, C(x,0) = GO(—x)

For the boundary condition ‘with memory'’:

C(x,t) = G — Co(l — m)erfc (XN — X)
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Boundary condition ‘with memory’
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Experimental verification

Normal diffusion of methanol in water, membrane
thickness ~ 0.2mm

membrane .
aqueous solution
of methanol

laser beam

140 mm

glass cuvette




Cx,t)

Co = 0.125mol/dm3, a = 1, D = 0.00097 mm?/s, r1 = 0.15,

ko = 0.185, t = 480, 960, 1440, 1920, 2400s, symbols —
experimental results, solid lines — solutions for the bc with memory,
dotted lines — solutions for the bc without memory



Cx,t)

Co = 0.250mol/dm3, a = 1, D = 0.00097 mm?/s, r1 = 0.15,

ko = 0.185, t = 480, 960, 1440, 1920, 2400s, symbols —
experimental results, solid lines — solutions for the bc with memory,
dotted lines — solutions for the bc without memory



Co = 0.500mol/dm3, a = 1, D = 0.00097 mm?/s, r1 = 0.15,

ko = 0.185, t = 480, 960, 1440, 1920, 2400s, symbols —
experimental results, solid lines — solutions for the bc with memory,
dotted lines — solutions for the bc without memory



Co = 0.750mol/dm3, a = 1, D = 0.00097 mm?/s, r1 = 0.15,

ko = 0.185, t = 480, 960, 1440, 1920, 2400s, symbols —
experimental results, solid lines — solutions for the bc with memory,
dotted lines — solutions for the bc without memory



Time evolution of the total amount of substance W/(t) in
the region x >0, W(t) = [;~ C(x, t)dx
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Go = 0.125,0.250, 0.500, 0.750 mol/dm*, a = 1, D = 0.00097 mm?/s,
k1 = 0.15, k2 = 0.185, symbols — experimental results, solid lines — solutions
for the bc with memory, dotted lines — solutions for the bc without memory



The Green's functions for subdiffusion, v(s) = s, a <1

P_(x,t;x0) =
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a, 8 > 0 (the function f, 5 can be treated as a special case of the Fox function)



Slow subdiffusion
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Subdiffusion
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Figure : Plots of the Green’s functions for subdiffusion occurring in the system
with a thin membrane obtained for « = 0.9, D = 0.001, 7; = 0.8, 72 = 0.3,
xp = —0.5 for times given in the legend.



Slow subdiffusion

Figure : Plots of the Green’s functions for ‘slow subdiffusion’ occurring in the
system with a thin membrane, here r = 1.9, the other parameters are the same
as in the previous figure.



Boundary condition at a thin membrane

for subdiffusion

Y 80‘/2P+(XN, t; x0)
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for slow subdiffusion
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Final remarks

2]

The presented model allows one to obtain the Green's
functions for various kinds of diffusion.

The model is useful to describe diffusion in systems in which
homogeneity can be broken at several points or which are
composed of several parts.

The new boundary condition at a thin membrane contains a
fractional time derivative; this derivative is present also in the
boundary condition at a thin membrane located in a system in
which normal diffusion occurs. Thus, normal diffusion in a
membrane system appears to be a process with a ‘long
memory’ which is created by the membrane.



Thank you for your attention )




From discrete to continuous time

1 1
Pri1(m; mg) = EPn(m —1;,mo) + §Pn(m +1; mg)

Generating function

S(m, z; mg) ZZP (m, mg)

We use the following formula
(m, t; mg) ZP m, mo)®,(t) , (1)

where ®,(t) is the probability that the particle takes n jumps in
the time interval (0, t).

$uls) = — ()] . (2)



From discrete to continuous time

Combining the Laplace transform of Eq. (1) with Eq. (2) we get

Is(m, s;mg) = O] )

S(m,o(s); mp) . (3)J




From discrete to continuous space variable

Supposing € denotes the distance between discrete sites, and
supposing
X=€em, xp=¢€emg, xy = €N,

taking into consideration the following relation valid for small €

P(m,t; mg)
€

~ P(x,t;x0) ,

we pass from a discrete to a continuous space variable assuming
that € is small.



From discrete to continuous space variable

Z)]Im—mol
5(m,z; mo) = [775/1)]722 J
1-V1-22
n(z) = -,
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> \/ﬁv(s) 1-— \/2;LV(S) — ,uzvz(s)

P(x,s;x0) = es\/2v(5) — v (s) 1— av(s)
P(x,5:x0) 0, P(x,5:x0) < 00 = e ~ /i J




Subdiffusion equation and its fundamental solution
(Green's function)

i\)(X7s;X0) = @67|X,X0‘\/@
2sv/D
P(x,s: oy — Ds &P(x,5:x)
sP(x,s;x0) — P(x,0;x0) = e

1 1
Pria(m; mo) = EP"(m —1;mo) + §Pn(m + 1; mo),

ﬁ’(m,s; mg) = 1%@(5)5 (m,&(s); mo),

sP(x, s1x0) = P(x,0; x0) = 2(1sf(as;25)) : P(a)z;;XO) J




Interpretation: approximation of &(s) for small €, not for
small s!

N 1
=12 J

In the limit of small € (for s > 0)

2(5) % 1- = u(s) }




Subdiffusion equation with fractional time derivative,

v(s) = s
sP(x,5) = P(x,0) = D% , J
OPLut) _ p O PP0E) g cact J

The Riemann—Liouville derivative is defined as being valid for § > 0 (here k is a
natural number which fulfils k — 1 < § < k)

s
ddigt): 1 5)dt/</ (t— )" 5— LE(¢')dt

For a = 1 one obtains a normal diffusion equation.




The particular forms of the generating function, hereafter denoted
as S; where the index i denote the signs of m — N, are the
following (here mg < N)

+ q1 — qon(z) [1(2)]2N-m-mo+1
1—(g1+q—1)n(2) V12 )

Si(m,z; mg) = [n(2)]™"™ (1 +n(2))(1 — q1) .
o V1I=22[1— (g1 + q2 — 1)n(2)]




Basic relations for reflection membrane coefficients

However, a new problem arises within this limit. The mean number of steps
(n(t)) over time interval [0, t] is given by the following formula

o) =7 |5 o) = 2 )

which provides (n(t)) — oo when e — 0. Thus, for a very small €, (n(t))
takes anomalous large values. Then, the probability that a particle which tries

to pass the partially permeable wall ‘infinite times’ in every finite time interval

passes through the wall, is equal to one. In order to avoid such a situation we
assume that g1 and ¢ are the functions of the parameter € (for g1, g> > 0)

which fulfil g1(0) = ¢2(0) = 1. After calculations we get (T. Kosztotowicz,
PRE 91, 022102 (2015))

qule)=e 7, qae) =e 2. )

Y1, 2 — reflection membrane coefficients for continuous system



Time evolution of the total amount of substance W(t) in
the region x >0, W(t) = [;~ C(x, t)dx
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The problem

Parameters (probabilities) describing random walk in a discrete
system, like the probability of jump pm m+1 = Pm+1,m = 1/2,
probability of stopping a particle by a membrane g, probability of
particle's absorbing R etc., should be redefined in a system with
continuous variables.

The parameters 1 or/and € can be involved into relation between
‘discrete’ and ‘continuous’ diffusion parameters.




Laplace transforms of the Green's functions
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