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Relaxation rates and phase transitions



o Systems at strong coupling exhibit various phase structures

o Pure gluon system — 1°* order phase transition (left)

o Gluons + quarks — smooth crossover (right)
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Phase structure at strong coupling

Lattice methods do not reach real time dynamics easily

©

Use other methods to model strongly coupled phase transitions

©

Compute the spectrum of linearized perturbations

©

Compute transport coefficients and non-hydrodynamic modes

Check linear stability

©

©

Method:
Use a string theory based approach to formulate models at strong
coupling!
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Questions

o Does spinodal instability appear for a system with a 15% order
phase transition?

o Does dynamical instability has to be accompanied by a
thermodynamical instability?

o How do non-hydrodynamic degrees of freedom behave in the
critical region?

o Do diffusive modes appear?

Method:
Use a string theory based approach to formulate models at strong
coupling!
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Holography and Quantum Field Theory

o Holographic principle P—
Quantum gravity in d f;‘;a%”mg”%
dimensions must have a Ly = Wy é’b&,
number of DOF which :gﬁ%; S @ggi
scales like that of QFT in “?QQ'@W@@%:
. . Sy M@'@,"’a
d — 1 dimensions N ey
't Hooft and Susskind '93 e
o String Theory realization:
Theory is conformal and supersymmetric Maldacena '97

o Extensions to non-supersymmetric and non-conformal field
theories are possible

o Applications: elementary particle physics and condensed
matter physics
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Bottom-up models

o Equilibrium state in QFT «— black hole in dual spacetime
Field theory temperature +— Hawking temperature
Field theory entropy «— Bekenstein-Hawking entropy
E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

o Assuming AdS/CFT dictionary, try to model gravity+matter
background to approach as closely as possible to your favourite
physics

o The simplest case: gravity + single scalar self-interacting field

U. Gursoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Phase transitions in holography

o Finite T states correspond to various black hole solutions in
the dual spacetime

o Phase structure is determined by the choice of gravity
Lagrangian parameters

o It is possible to tune these parameters to mimic

— crossover, e.g. QCD
— 15 order phase transition, e.g. pure gluon systems
— 214 order phase transition

U. Gursoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Quasinormal modes (QNM:s)

©

QNMs are the solutions of linearized fluctuation equations that
correspond to poles of holographic retarded Green’s functions

©

In general
wn(k) = Qp(k) — il 4 (k)

where n =1,2,3, ... Q,(k)—oscillation frequency,
I,(k)—damping rate.

o Stable modes have I',(k) > 0

o A convenient normalization is: q=r357> W=r357F

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)
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Hydrodynamics

o The hydrodynamic mode is defined by

l k) =0
oy el

o The sound mode

i (4n  C\ > 3
K)=tek— —— (2005 & k
w(k) = +c 2T<3S+5> +O(K?)

n—shear viscosity, (—bulk viscosity, s—entropy density,
cs—speed of sound, T—temperature

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)

@ In holographic models also high order hydro computation is
possible

M. Lublinsky, E. Shuryak, Phys. Rev. C 76, 021901 (2007)
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Spinodal instability

o When c¢2 < 0 we have purely damped hydro-modes

L (40  C\ 2 . 2
w~ +i|cs| k 2T(35+ >k—:|:I|C5|k iTsk

so for small enough k we have Im w > 0
o This mode is present for a finite range of 0 < k < kpax

o The maximum momentum for the unstable mode is
kmax — |Cs|/rs

This appears for systems with a 15 order phase transition;
spinodal instability

©

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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Examples of spinodal instabilities

o Water: superheated liquid and supercooled vapour

o Spinodal instability in nuclear matter liquid-gas transition

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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Example I: First order phase transition

o Transition between two different black hole solutions

o An example of holographic 15 order phase transition

o There exists a critical temperature T, ~ 1.05T,,

o For the unstable region (red dashed line) we have ¢ < 0
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Example |: Holographic spinodal instability
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©
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©

Modes for T ~ 1.06 T,, where c? ~ —0.1

The hydrodynamic mode follows the thermodynamic instability

Scale of the bubble = k for which Im w is maximal

The maximal value of Im w is called the growth rate

Non-hydrodynamic modes have weak k-dependence

J. Jankowski
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Exam

o Transition between black hole and horizon-less geometry
S. W. Hawking, D. N. Page, Commun. Math. Phys. 87, 577 (1983)

o Holographic 1 order phase transition
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G. Boyd et.al. Nucl. Phys. B 469, 419 (1996)
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o Below T,, no black hole solution exists
o Green line - stability region, blue dashed line - spinodal

o Red dashed line -, dynamically unstable” region
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Example |I: Dynamical instability
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o Quasinormal modes at T = 1.027T7,,

o System displays dynamical instability in spite of
thermodynamical stability!

o The system is unstable against uniform (k = 0) perturbations

o Possible implications for thermalization time
U. Gursoy, A. Jansen, W. van der Schee, Phys. Rev. D 94, no. 6, 061901
(2016)
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Summary

o Thermodynamic instability — dynamical instability

o Converse doesn’t seem to be true!
U. Gursoy, A. Jansen, W. van der Schee, Phys. Rev. D 94, no. 6, 061901
(2016)

o Non-trivial phase structure limits the applicability of
hydrodynamics

o In most cases non-hydro degrees of freedom have very weak
dependence on k — ,ultralocality”

o Extensions to lower couplings and comparison to kinetic theory
S. Grozdanov, N. Kaplis, A. O. Starinets, JHEP 1607, 151 (2016)

o Experimental evidences in cold atom systems
J. Brewer, P. Romatschke, Phys. Rev. Lett. 115, no. 19, 190404 (2015)
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