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Soliton models are quark models

Soliton Models:
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chiral symmetry breaking

chirally inv. manyquark 1nt.

soliton configuration
no quantum numbers except B

rotation generates flavor and spin



Collective quantiztion — symmetric top
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There is no kinetic term
for 8-th angular velocity
— conjugated momentum
IS constant and produces
constraint:

ms = N,./2V/3



O(1) corrections

to M, do not allow Mass formula

for absolu;re mass predictions
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O(1) corrections

to M, do not allow Mass formula

for absoluTe mass predictions
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first order perturbation
in the strange quark mass
and in N_:
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O(1) corrections

to M, do not allow Mass formula

for absoluTe mass predictions
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splitting I known ?I exotic-nonexotic splittings
first order perturbation
in the strange quark mass
and in N_:
Hor=aD® +8Y + L ZD(g)J
a~meNe, B,7~m,O(1)
]1 M NN Mconst 1 s ~ 10%

X
expec‘red accuracy: N,  Meonst



Wave functions and allowed states
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Successful Phenomenology

In a "model independent” approach

one can get both good fits to the existing data
(including very narrow light pentaquark ©)

one can fix all necessary model parameters:

M, I,,I,,ap,v



A comment on light pentaquarks
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Status of the ®* analysis at LEPS

T. Nakano, for the LEPS collaboration
Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

Abstract

We report recent results on the Theta™ study from LEPS. The yd — K* K~ pn reaction has
been studied to search for the evidence of the ®" by detecting K™ K~ pairs at forward angles. The
Fermi-motion corrected nK* invariant mass distribution shows a narrow peak at 1.53 GeV/c2.
The statistical significance of the peak calculated from a shape analysis is 5 o, and the differential
cross-section for the yn — K~ O™ reaction is estimated to be 12 + 2 nb/sr in the LEPS angular
range by assuming the isotropic production.

Key words: Penta-quark, Photo-production
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Observation of a narrow baryon resonance with positive strangeness formed in K *Xe collisions

V. V. Barmin,' A. E. Asratyan,'-” V. S. Borisov,' C. Curceanu,” G. V. Davidenko,' A. G. Dolgolenko,' C. Guaraldo,’
M. A. Kubantsev,! I. F. Larin,! V. A. Matveev.! V. A. Shebanov,' N. N. Shishov.' L. I. Sokolov,' V. V. Tarasov,'
G. K. Tumanov,' and V. S. Verebryusov'

(DIANA Collaboration)

Vnstitute of Theoretical and Experimental Physics, Moscow 117218, Russia
Laboratori Nazionali di Frascati dell' INFN, C.P. 13, I-00044 Frascati, Italy
(Received 9 February 2014; published 14 April 2014)

The charge-exchange reaction K+Xe — K°pXe' is investigated using the data of the DIANA experiment.
The distribution of the p K effective mass shows a prominent enhancement near 1538 MeV formed by nearly 80
events above the background, whose width is consistent with being entirely due to the experimental resolution.
Under the selections based on a simulation of K *Xe collisions, the statistical significance of the signal reaches
5.50. We interpret this observation as strong evidence for formation of a pentaquark baryon with positive
strangeness, ©*(uudds), in the charge-exchange reaction K*n — K°p on a bound neutron. The mass of
the @ baryon is measured as m(©") = 1538 + 2 MeV. Using the ratio between the numbers of resonant and
nonresonant charge-exchange events in the peak region, the intrinsic width of this baryon resonance is determined
as [(©) = 0.34 +0.10 MeV.




Successful Phenomenology

In a "model independent” approach

one can get both good fits to the existing data
(including very narrow light pentaquark ©)

one can fix all necessary model parameters:

M, I,,I,,ap,v

but also one can recover the NRQM result
in a special limit

NRQM limit =
= squeezing the soliton to zero size




NRQM Limit
Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305

MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995

energy is calculated
with respect to the vacuum:
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in the NRQM limit only valence level contributes
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NRQM Limit .
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Pentanucleon?

, L D. Werthmuller et al. [A2 Collaboration]
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Pentanucleon?
i

M.V. Polyakov and A. Rathke,
On photoexcitation of baryon anti-decuplet
Eur. Phys. J. A 18 (2003) 691
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natural (but not the only one) explanation if N™ is a pentaquark



PRL 117, 132502 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

Insight into the Narrow Structure in 5 Photoproduction on the Neutron from
Helicity-Dependent Cross Sections

(A2 Collaboration at MAMI)

The double polarization observable E and the helicity dependent cross sections oy, and 03, were
measured for n photoproduction from quasifree protons and neutrons. The circularly polarized tagged
photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a
longitudinally polarized deuterated butanol target. The almost 4x detector setup of the Crystal Ball and
TAPS is ideally suited to detect the recoil nucleons and the decay photons from # — 2y and 5 — 32°. The
results show that the narrow structure previously observed in 5 photoproduction from the neutron is only
apparent in oy » and hence, most likely related to a spin-1/2 amplitude. Nucleon resonances that contribute
to this partial wave in  production are only N1/2~ (§;) and N1/2* (Py,). Furthermore, the extracted
Legendre coefficients of the angular distributions for o/, are in good agreement with recent reaction model
predictions assuming a narrow resonance in the P;; wave as the origin of this structure.
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Soliton with N.- 1 quarks

if N is large, N.- 1 is also large and one
can use the same mean field arguments
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color factorizes!



Allowed SU(3) irreps.

3 5=0 6 s=1
. e » o— 1'=2/3
FE = (N,~1)/3
e B~



Heavy Baryons: soliton + heavy Q

3 5=0(1/2) 6 s=1(1/2 3/2)



Splittings inside multiplets

3s5=0(012)  6s=1(1232) =5,

one has to add
¥ (2o h.f. interaction



Splittings inside multiplets

3 5=0(1/2) 6 s=1(1/2 3/2)
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Splittings inside multiplets

6 s=1(1/2 3/2)
= 1233 +£21|g, 5 = 1184£27q o
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Splittings inside multiplets

3 5=0(1/2) 6 s=1(1/2 3/2)

5|
Equal splittings within \*«.ff Qp
multiplets follow from
Eckhart-Wigner theorem

(GMO relations)

:.Q \ I f/ :.Q



Splittings inside multiplets

3 5=0(1/2) 6 s=1(1/2 3/2)
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5|
Equal splittings within \*«./; Qp
multiplets follow from however the
Eckhart-Wigner theorem relation between

(GMO relations) the deltas does not



Splittings inside multiplets

3 5=0(1/2) 6 s=1(1/2 3/2)

from the fits ¢ 5\ I ;e
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to the light A
sector we get:

03 = 203.8 % 3.5 MeV, (exp.: 178 MeV)

0g = 135.2 1+ 3.3 MeV., (exp.: 121 MeV) 13%




Splittings inside multiplets

3 5=0(1/2) 6 s=1(1/2 3/2)
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to the light \ " Q‘Q m, cancels out
sector we get:

03 = 203.8 % 3.5 MeV, (exp.: 178 MeV)
0g = 135.2 £+ 3.3 MeV, (exp.: 121 MeV)

from the fits ¢ 56\11 ;e O, B

13%




Splittings between multiplets

3 5=0(1/2) 6 s=1(1/2 3/2)

L2 0 Q _
A~ o =S (MG = Mg) = 114.7], = 115.2],



Prediction for €0°,

model — independent relation:

MQ:} — QMEQQ + Mz*Q . QMZQ

satisfied for charm:

QF =2764.5 -

-3.1 MeV (2765.9 -

-2.0)



Prediction for €0°,
model — independent relation:
Ma+ = 2M= My« — 2M
Qr =, T Mxy P

satisfied for charm:

Q*C =2764.5£3.1 MeV (2765.9 = 2.0)
Q*b = 6079.8 £ 2.3 MeV




Prediction for €0°,

model — independent relation:

MQ:} — QMEQQ + Mz*Q . QMZQ

satisfied for charm:

Q*C =2764.5£3.1 MeV (2765.9 = 2.())

Q. = 6079.8 -

- 2.3 MeV

compatible with Karliner and Rosner:

6082.8 -

= 5.6 MeV  anas Phys. 324 (2009) 2-15



Further developements

heavy baryon



Further developements

heavy tetraquark



Further developements

heavy tetraquark
= soliton + spin 1 di(anty)quark in color 3



Doubly heavy tetraquarks

35=0(S=1) 6s5=1(5=0,1,2)
] . o o— Y'=2/3

preliminary
studies show that such states maybe
stable against strong decays



Further developements:
heavy pentaquarks

15 5s=0,1
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Further developements:
heavy pentaquarks

soliton in 15 (quatroquark) 15s=0,1
+ heavy quark: 2x1/2 + 3/2 m-----m

:_)) s=0 6 s=1 f/{ \x ff \\
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