"About Neutrinos and their oscillations"

Ewa Rondio
National Centre for Nuclear Research
Warsaw, Poland

12-th Polish Workshop on Relativistic Heavy-lon Collisions
Kielce, November 5-th, 2016

What is "oscillation"??

The flavour eigenstate is not the same as the mass cigenstate

Mixing matrix (Pontecorvo-Maki-Nakagava-Sakata=PMNS)

First look at
 two neutrino case

$$
\begin{aligned}
& v_{e}=\cos \vartheta v_{1}+\sin \vartheta v_{2} \\
& v_{\mu}=-\sin \vartheta v_{1}+\cos \vartheta v_{2}
\end{aligned}
$$

$P\left(v_{\mu} \rightarrow v_{c}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{1.27 \Delta m^{2} L}{E}\right)$
L - dist. to the detector
E - neutrino energy

Maximal effect when

$\sin ^{2}\left\{1.27 \Delta \mathrm{~m}^{2} \mathrm{~L} / E\right\}=1$

Source

$$
P\left(v_{\alpha} \rightarrow v_{\beta}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{1.27 \Delta m^{2} L}{E_{v}}\right)
$$

\boldsymbol{V} energy - E and distance L define range of sensitivity

	$\mathrm{E}_{v}(\mathrm{MeV})$	$\mathrm{L}(\mathrm{m})$	Range of Δm^{2}
Supernovae	<100	$>10^{19}$	$10^{-19}-10^{-20}$
Solar	<14	10^{11}	$10^{-10} \quad ? ? ?$
Atmospheric	>100	$10^{4}-10^{7}$	$10^{-3}-10^{-4}$
Reactor	<10	$<10^{6}$	10^{-5}
Accelerator - SB	>100	10^{3}	10^{-1}
Accelerator - LB	>100	$<10^{6}$	10^{-3}

Two mass differences and three neutrino types oscillatimg
\rightarrow full description in 3×3 oscillation matrix,
\rightarrow studies in many experiments to get full picture....

Neutinino oscillations - picture as off today

FLAYOR

PMNS mixing matrix

„atmospheric" SK, K2K, T2K, MINOS Nova

$$
\Delta m_{31}^{2}=\left\{\begin{array}{c}
2.53_{-0.10}^{+0.08} \\
-\left(2.40_{-0.07}^{+0.10}\right)
\end{array} \times 10^{-3} \mathrm{eV}^{2}\right.
$$

CHOOZ,
DayaBay,
Reno,
DblChooz,
T2K
$\theta_{12}=34^{\circ} \pm 1^{\circ}$
$\theta_{23}=40^{\circ}+5^{\circ} /-2^{\circ}$
$\theta_{13}=9.1^{\circ} \pm 0.6^{\circ}$!

Based on PDG 2012
mixing angles, squared mass differences, CP violation phase - fundamental parameters of nature

Two free parameters for the three $\Delta \mathrm{m}^{2 \prime} \mathrm{~s}$. $\left(\Delta \mathrm{m}_{31}{ }_{31}=\Delta \mathrm{m}^{2}{ }_{21}+\Delta \mathrm{m}^{2}{ }_{32}\right)$

What we know about each sector?

1-2-solar neutrinos

Super-K: neutrino's arriving from the Sur?

SNO experiment : measurement sensitive to 3 reactions

 Including sensitivity to Neutral Currents \rightarrow it "sees all neutrinos"

$$
v_{e}+d \rightarrow p+p+\mathbf{e}^{-} \quad E_{\text {thres }}=1.4 \mathrm{MeV}
$$

$$
v_{x}+d \rightarrow v_{x}+\mathbf{p}+\mathbf{n} \quad E_{\text {thres }}=2.2 \mathrm{MeV}
$$

$$
v_{\mathbf{x}}+\mathbf{e}^{-} \rightarrow v_{\mathbf{x}}+\boldsymbol{e}^{-} \quad \mathrm{E}_{\text {thres }}=0 \mathrm{MeV}
$$

(ES

V

Here it is seen directly that v_{e} flux is smaller than expected from Solar Model, but sum over $3 v$ flavours gives expected flux

Parameters for $1-2$ sector:

- From sensitivty for Sun-Earth
 distance - expected $10^{-10} \mathrm{eV}$
- Why it is different?
we needed to make correction for

MATTER EFFECTS

\rightarrow Moddifivation of potential due to electrons density in matter

$$
\Delta m_{\text {matter }}^{2}=\sqrt{\left(\Delta m^{2} \cos 2 \theta-A\right)^{2}+\left(\Delta m^{2} \sin 2 \theta\right)^{2}}
$$

KAMLAND - sector 1-2 for anti-neutrinos from reactors Obs/exp $=0.631+/-0.014$ (stat)

$$
\text { +/- } 0.027 \text { (syst) }
$$

Corresponding to
exclusion of non-oscillation at 10.2 o CL
no matter effects !!!

Sector 2-3 \rightarrow first signal - atmospheric neutrinos

studies of background for proton decay ubservation ot strong

$\underset{\text { (for } \mathrm{E}_{\mathrm{v}}<\text { few } \mathrm{GeV} \text {) }}{\text { Ratio of } \nu_{\mu} / \nu_{e} \sim 2}$
Ratio of $V_{\mu} / V_{e} \sim 2$
(for $\mathrm{E}_{\mathrm{v}}<\mathrm{few} \mathrm{GeV}$)

Up/Down Symmetric Flux (for $\mathrm{E}_{\mathrm{v}}>\mathrm{few} \mathrm{GeV}$)

UP-DOWN asymmetry

$12800 \quad 6200 \quad 700 \quad 40 \quad 15 \mathrm{~km}$

Compare v_{u} to v_{e}-take ratios to cancel out errors on absolute neutrino fluxes:

$$
R=\frac{(\mu / e)_{\text {data }}}{(\mu / e)_{M C}}=0.638 \pm 0.016 \pm 0.050
$$

$$
R_{\text {highE }}=\frac{(\mu / e)_{\text {data }}}{(\mu / e)_{M C}}=0.658_{-0.028}^{+0.030} \pm 0.078
$$

Too few muon neutrinos observed!

Evidence for Oscillation of Atmospheric Neutrinos

interpretation of the deficit of v_{μ} after passing the Earth

What is x ?
Not e as we do not observe access of ν_{e}

So we observe

The neutrino interaction in SK is identified by observation of a charged lepton

$$
\text { But } m_{\mu} \ll m_{\tau} \text {, so }
$$

$$
\nu_{\mu}+N \rightarrow \mu^{-}+X
$$

$$
\nu_{\tau}+N \rightarrow \tau^{-}+X
$$

This is why v_{μ} are "missing"
if energy is too small to produce τ, v_{τ} is not observed

Plot showing oscillations for muon neutrinos from historical publication

FIG. 4. The ratio of the number of FC data events to FC Monte Carlo events versus reconstructed L / E_{ν}. The points show the ratio of observed data to MC expectation in the absence of oscillations. The dashed lines show the expected shape for $\nu_{\mu} \leftrightarrow \nu_{\tau}$ at $\Delta m^{2}=2.2 \times 10^{-3} \mathrm{eV}^{2}$ and $\sin ^{2} 2 \theta=$ 1. The slight L / E_{ν} dependence for e-like events is due to contamination (2-7\%) of $\nu_{\mu} \mathrm{CC}$ interactions.

Present knowledge about 2-3 sector parameters:

Summary of present knowledge:

NH
IH

$\left|\Delta \mathrm{m}^{2}{ }_{32}\right|\left(\sqrt{2} 0^{-3} \mathrm{e}^{2}\right)$
$0.532_{-0.060}^{+0.044}$
$2.545_{-0.082}^{+0.084}$
$0.534_{-0.059}^{+0.041}$
$2.510_{-0.083}^{+0.082}$

Most precise measurement
 Beam energy and distance tuned To get maximal oscillation effect

$1-3 \ldots$ and ways of measuring θ_{13}

- disappearance -> reactor experiments

$$
\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}
$$

```
\[
P_{\mathrm{sur}} \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{31}^{2} L / E\right)
\]
P}\mp@subsup{P}{\textrm{sur}}{}\approx1-\mp@subsup{\operatorname{sin}}{}{2}2\mp@subsup{0}{13}{}\mp@subsup{\operatorname{sin}}{}{2}(1.267\Delta\mp@subsup{m}{31}{2}L/E)
```

Energy ~ a few MeV
Distance ~ a few km

- appearance -> long-baseline experiments with v_{μ} beam

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

$$
P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(1.27 \Delta m_{23}^{2} L / E\right)
$$

Second order terms depend on $\bar{\delta}$ and mass hierarchy

> Energy ~ a few GeV Distance ~ a few hundred km

Sector 1-3 reactor data

Daya Bay, RENO, Double CHOOZ most precise measurements of θ_{13}

$$
\begin{aligned}
& \sin ^{2} 2 \theta_{13}=0.084 \pm 0.005 \\
& \left|\Delta m_{e e}^{2}\right|=(2.42 \pm 0.11) \times 10^{-3} \mathrm{eV}^{2}
\end{aligned}
$$

Observation in muon-neutrino beam

Selecting candidates for

 electrons
e-like

- Electron-like ring
- $\mathrm{E}_{\mathrm{vis}}>100 \mathrm{MeV}$
- $\mathrm{N}_{\text {michels }}=0$
- $E_{V, \text { rec }}<1250 \mathrm{MeV}$
$28 v_{\text {e }}$ events
- Not π^{0}-like

selecting candidates for

muons

μ-like

- Muon-like ring
- $P_{\mu}>200 \mathrm{MeV} / \mathrm{c}$
- $\mathrm{N}_{\text {Michels }}<2$
$120 \mathrm{v}_{\mu}$
events

Reconstructed v energy (GeV)

Whatts next?

$$
\begin{array}{r}
\delta \neq 0, \pi ? \\
m_{3} \\
\gtrless m_{2} ? \\
\theta_{23} \gtreqless 45^{\circ} ?
\end{array}
$$

Differences in neutrino vs antineutrino oscillation probabilities

Changes the contribution from matter effects (important for neutrinos travelling through dense matter e.g through Earth)

Additional source of degeneracies

Measurement strategies (for LBL):
An unknown hierarchy usually leads to a reduced ability to observe CP violation

- Looking for appearance

$$
P\left(v_{\mu} \rightarrow v_{e}\right) \text { vs. } P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)
$$

- The longer the baseline the better (matter effects!)
- Study more than one oscillation maximum to disentangle the effects

CPV and MF

In long baseline neutrino experiments
\Rightarrow Many contributions, for precisions all need to be considered
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=4 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \sin ^{2} \Delta_{31} \quad$ leading term
CP conserving

$$
+8 C_{13}^{2} S_{12} S_{13} S_{23}\left(C_{12} C_{23} \cos \delta-S_{12} S_{13} S_{23}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}
$$

$-8 C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \cdot \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}$ CP violating
$+4 S_{12}^{2} C_{13}^{2}\left(C_{12}^{2} C_{23}^{2}+S_{12}^{2} S_{23}^{2} S_{13}^{2}-2 C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right) \cdot \sin ^{2} \Delta_{21}$
$-8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \frac{a L}{4 E_{\nu}}\left(1-2 S_{13}^{2}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31}$
$+8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \frac{a}{\Delta m_{31}^{2}}\left(1-2 S_{13}^{2}\right) \cdot \sin ^{2} \Delta_{31}$, matter effects
$C_{i j}, S_{i j}, \Delta_{i j}$
$\cos \theta_{i j}, \sin \theta_{i j}, \Delta m_{i j}^{2} L / 4 E_{\nu}$

beam - results

SK flux prediction

Analysis
with anti-nu beam mode Disappearance: parameters consistent with

- maximal mixing
- parameters same as neutrino
- other experiments

Appearance-3 e-like events seen more data needed

New analysis v and $\overline{\mathrm{V}}$

- First time from single experiment 90\% CL range for CP violation phase
- Pointing to value corresponding to CP violation (0 and π otside 90\% limit)
- More data needed \rightarrow T2K II
- Combined fits for all experiments will come soon (teoretica groups)

Long Baseline Fufure

And how about connection of neutrinos with work of Stanisław??

First try.... Small oscillations of a collisionless quark plasma Paper in Physics Letters B, 188 (1987) 129-132 Abstract:

The oscillations of a collisionless quark plasma are studied on the basis of the gauge covariant kinetic equations. The small oscillation approach provides the dispersion relations which coincide with those predicted by the finite-temperature QCD in one-loop approximation.
\rightarrow This connection is weak and not natural (only by playing words)
Next try.... Started with popularization:
"Tachyons: Particles faster than light", Postępy Fizyki 32 (1981) 351
and more in this field.....

сообщвиия обьвдиненного института ядврных исследования

дубна

E2-83-299

St.Mrøwezyński*

THE PHASE-SPACE OF TACHYONS
We conclude that it is easy to construct PS that is free of difficulties discussed in the previous section, however at the expense of Lorentz invariancy. We accept the view of the authors of $/ 7 /$ that "the first major problem to be overcome in developing a quantum theory of tachyons is in reconciling the apparent conflict between Lorentz invariancy and need to have only positive energies capable of being observed to the theory".

E2-83-476

On the ideal gas of tachyons

St.Mrowczyński*

ON THE IDEAL GAS OF TACHYONS
The specific heat of the idea gas of tachyons and the gas of bradyons as a function of m / T -

- 1982-1986-asystent, Joint Institut for Nuclear Research, Dubna, ZSRR
...and here we have connection:

in 2011 for some time V looked like tachyons

Team admits to possible errors in faster-than-light finding.
 NATURE, 27 February 2012

Fault was found in the delay in GPS connection, after that v speed < c again
so present status:
no tachyons found experimentaly
(again..)

With best wishes for Stanisław !!!!!!

