Semirelativity In
Semiconductors

W. Zawadzki

Institute of Physics,
Polish Academy of Sciences,

Warsaw, Poland



Band structure of narrow gap semiconductors
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Fig. 1. Energy band structure at the I point of the Brillouin 2zone:
a/ InSb-type semiconductors, b/ HgTe-type zero-gap semiconductors.
In the three-level model of I'y ,I'g and I'; levels the shape of the
conduction band in both cases is almost the same



Band dispersion in two-band model
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Electron effective mass in InSb
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Electron effective mass in InSb at room temperature versus free electron concentra.
tion. The solid line, calculated for the Kane two-level model, represents the
mass values at the Fermi energy, as indicated on the upper abscissa. At



Electron effective mass in HgSe
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Electron effective mass in HgSe versus free electron concentration. The solid line is
caleulated for the Groves and Paul three-level model, including higher bands



Relativistic analogy
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Relativistic analogy
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The turning point between the magnetic and
electric type of solutions can also be obtained
from classical considerations. The dispersion
relation between momentum and energy for
two simple interacting bands is given by the
simplified Kane formula as € =-¢g/2+ [(eg/E}2
+eg;ﬁ2/2m*]“2. It has the form of the relativ-
istic relation with 2m.c?® replaced by €g and
my by m*. It is well known that the turning
point between the magnetic and electric type
of motion for a classical relativistic electron
in crossed fields is given by cE/H =c.*® Since
¢ may be written as (2myc®/2m,)''?, we see
that in our case the limiting velocity is v = (Eg/
2m*)'®, This gives the turning point at (eH/
m*c)” = 2¢"E® /m*e4 in agreement with the quan-
tum result.



Relativistic analogy
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FIG. 1: Energy-wave vector dependence in the forbidden
gap of InAs. Various symbols show experimental data of
Parker and Mead [19], the solid line is theoretical fit using

Eq. (40). The determined parameters are Ay = 41.5 A and u
= 1.33%10% cm/s. After Ref. [2].



(10° deg cm™)

S(E)-3(0)

Crossed electric and magnetic fields E_H
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PHOTON ENERGY (meV)

Crossed electric and magnetic fields
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Fig, 8, Photon energies of Voigt-effect peaks

in crossed fields fné- H = 96,5 kGs as a

function of ( E [/ H)
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Crossed electric and magnetic fields E_H
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Crossed electric and magnetic fields E_H
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Exponential absorption coefficient below the direct gap
ot germanium due to electric field E = 5,7 x lt}4 V/cm for
various values of transverse magnetic field.
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Two-Band description

Two-band Kk.p
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Zitterbewegung

E. Schrodinger 1930
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Graphene

Band dispersion E(K) in
graphene from ARPES
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Hamiltonian HG =u

where u=1x108cm/s &=
1 1 de * €
* = 2 =0

m A%k dk u

ZB with T. M. Rusin
oH
op;

velocity

K
v (1) = kysin(ZUkt)

Graphene

O px - Ipy
px T Ipy O I .
+UsK  no gap!
g=mu’

v(t) = eM/nyg it

Frequency hw, = 2UhK

k—b

17



Graphene

Transient oscillatory electric
current caused by the ZB in

monolayer graphene versus

time, calculated for a
Gaussian wave packet
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@, nearly constant, amplitude depends on the packet’s width d 18
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Topological insulators
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Band dispersions E(K) in
PbSnSe versus T
(ARPES Dziawa 2012)
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