Is the QGP created in heavy ion collisions in local thermal equilibrium?

Michael Strickland Kent State University Kent, OH USA

12th Polish Workshop of Relativistic Heavy-Ion Physics Nov 5, 2016

No.

Discussion

- Of course, no system is ever in perfect equilibrium, so this is a somewhat silly question.
- We should instead ask how close is the system to equilibrium using some measure.
- For example, we could compare the diagonal components of the energy-momentum tensor in the local rest frame of the matter.
- If they are the same, then the system is isotropic in momentum space. This occurs if the system is in equilibrium and hence is a required for thermalization (necessary but not sufficient).

QGP momentum anisotropy cartoon

What are the relevant EQ mechanisms?

- Based on both weak and strong coupling calculations, the initial particle distribution functions are expected to anisotropic in momentum-space. How do they relax to EQ?
- In the high temperature (weak coupling) limit, one can approach this question systematically using perturbative QCD.
- In 2000 Baier, Mueller, Schiff, and Son calculated the thermalization time scale ("bottom up thermalization").
- They included the effects of gluon saturation in the initial state, elastic collisions, hard and soft particle radiation, etc.
- Estimated time for system to be perfectly isotropic with the particles having a thermal momentum distribution.

$$\tau_{\rm therm} \sim \frac{3}{2} \, \alpha_s^{-13/5} Q_s^{-1} \longrightarrow \begin{array}{c} \alpha_s \sim 0.3 \\ Q_s \sim 2 \, {\rm GeV} \end{array} \longrightarrow \tau_{\rm therm} \sim 3.4 \, {\rm fm/c}$$

But they missed something...

The Weibel Instability

- Consider an anisotropic ensemble of electrically charged particles.
- And then imagine that there is a super small fluctuation in the background magnetic field.
- In an anisotropic plasma, this causes filamentation of the currents.
- The filamented currents generate an induced magnetic field that adds to background field making it stronger.
- This then leads to stronger filamentation → exponential growth of the magnetic field.

The Chromo-Weibel Instability

The high-energy medium gluon polarization tensor can be obtained by linearizing collisionless transport theory $f(p, x) \rightarrow f(p) + \delta f(p, x)$

$$[v \cdot D_x, \delta f(p, x)] + g v_\mu F^{\mu\nu} \partial_\nu^{(p)} f(\mathbf{p}) = 0$$
$$D_\mu F^{\mu\nu} = J^\nu = g \int_p v^\nu \delta f(p, x)$$

or diagrammatically using "hard-loop" perturbation theory

$$\Pi^{ij}_{ab}(\omega,\mathbf{k}) = -g^2 \delta_{ab} \int_{\mathbf{p}} v^i \, \frac{\partial f(\mathbf{p})}{\partial p^l} \left(\delta^{jl} - \frac{v^j k^l}{\omega - \mathbf{v} \cdot \mathbf{k} + i\epsilon} \right)$$

[Mrowczynski and Thoma, hep-ph/0001164]

The Chromo-Weibel Instability

For simplicity assume that the anisotropic distribution function can be obtained from an arbitrary isotropic distribution function by a change of its argument. [Romatschke and MS, hep-ph/0304092]

$$f(p^2) \to f(p^2 + \xi(\mathbf{p} \cdot \mathbf{n})^2)$$

The polarization tensor can then be written as

$$\Pi_{ab}^{ij}(\omega,k) = m_D^2 \,\delta_{ab} \int \frac{d\Omega}{4\pi} v^i \frac{v^l + \xi(\mathbf{v}\cdot\mathbf{n})n^l}{\left(1 + \xi(\mathbf{v}\cdot\mathbf{n})^2\right)^2} \left(\delta^{jl} - \frac{v^j k^l}{\omega - \mathbf{v}\cdot\mathbf{k} + i\epsilon}\right)$$

where m_D is the *isotropic* Debye mass

$$m_D^2 = -\frac{g^2}{2\pi^2} \int_0^\infty dp \, p^2 \frac{df(p^2)}{dp} \sim g^2 p_{\text{hard}}^2$$

Anisotropic Gluonic Collective Modes ($\xi > 0$)

Anisotropic Gluonic Collective Modes ($\xi > 0$)

Instability growth rates as a function of momentum for $\langle p_T^2 \rangle / 2 \langle p_L^2 \rangle \simeq 10$ and $\theta_{\rm glue} = \pi/8$ with respect to the beamline.

Hard loop effective action

- Having seen that there is an instability, the natural follow-up question is for how long will it grow and how will it regulate itself.
- To answer this question we need the full effective action for an anisotropic QGP.

$$S_{\text{aniso}} = -\frac{g^2}{2} \int_x \int_{\mathbf{p}} \left\{ \frac{f(\mathbf{p})}{|\mathbf{p}|} F^a_{\mu\nu}(x) \left(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2} \right)_{ab} F_{\rho}{}^{b\,\mu}(x) + i \frac{C_F}{2} \frac{\tilde{f}(\mathbf{p})}{|\mathbf{p}|} \bar{\Psi}(x) \frac{p \cdot \gamma}{p \cdot D} \Psi(x) \right\}.$$

[Mrowczynski, Rebhan, and MS, hep-ph/0403256]

• With this, one can simulate instability evolution in a non-Abelian plasma using real-time lattice gauge theory methods.

Results from 3+1d simulations

- I will skip the discussion of static box simulations and jump straight to the result obtained from simulations which included the dynamical longitudinal expansion of the system \rightarrow HEL simulations (hard expanding loops).
- In this case, the hard particle momentum-space anisotropy evolves in time.
- For the results I will show here we assumed that the hard particles were free streaming

$$\Rightarrow \xi(\tau) = \tau^2 / \tau_0^2 - 1.$$

Pressure anisotropy

Gluon spectra

In a non-abelian gauge theory, unstable modes trigger a rapid UV cascade due to the non-linearities, e.g. three gluon vertex.

Gluon spectra

We see the very rapid development of a thermal distribution even though the initial condition was far from thermal (step function in momentum in this case). [Attems, Rebhan, and MS 1207.5795]

Gluon spectra

We see the very rapid development of a thermal distribution even though the initial condition was far from thermal (step function in momentum in this case). [Attems, Rebhan, and MS 1207.5795]

The unreasonable effectiveness of viscous hydrodynamics

- At this point you might be asking yourself: If the system is not in a near-equilibrium state, why does viscous hydrodynamics work so well to describe the data?
- As it turns out, viscous hydrodynamics can work reasonably well to describe the dynamics of the QGP even when the system is quite anisotropic in momentum space (next slide).
- In the language of viscous hydrodynamics the momentum-space anisotropy of the QGP is encode in the shear-stress correction to the ideal T^{µν}.

Comparison to exact solutions

- In some simple cases, it is possible to make an exact solution of the Boltzmann equation
- One finds that viscous hydrodynamics works reasonably well even in situations you might expect it not to
- Some viscous hydrodynamical frameworks of superior to others.

Comparison to exact solutions

Anisotropic Hydrodynamics

Generalized aHydro formalism

In generalized aHydro, so far one assumes that the distribution function is of the form

$$f(x,p) = f_{eq}\left(\frac{\sqrt{p^{\mu}\Xi_{\mu\nu}(x)p^{\nu}}}{\lambda(x)}, \frac{\mu(x)}{\lambda(x)}\right) + \delta \tilde{f}(x,p)$$

 $u^{\mu}u_{\mu} = 1$ $\xi^{\mu}{}_{\mu} = 0$ $\Delta^{\mu}{}_{\mu} = 3$ $u_{\mu}\xi^{\mu\nu} = u_{\mu}\Delta^{\mu\nu} = 0$

- 3 degrees of freedom in u^{μ}
- 5 degrees of freedom in $\xi^{\mu\nu}$
- 1 degree of freedom in Φ
- 1 degree of freedom in λ
- 1 degree of freedom in μ \rightarrow 11 DOFs

See e.g.

- M. Martinez, R. Ryblewski, and MS, 1204.1473
- L. Tinti and W. Florkowski, 1312.6614
- M. Nopoush, R. Ryblewski, and MS, 1405.1355

Anisotropic hydrodynamics vs data

[Nopoush, Ryblewski, and MS 1610.10055]

Conclusions and Outlook

- The QGP is not in isotropic thermal equilibrium.
- But, do not lose hope because viscous hydrodynamics seems to reasonably well describe QGP evolution even when the system is momentum-space anisotropic.
- Anisotropic hydrodynamics attempts to further improve the description of a momentum-space anisotropic QGP by including anisotropies at LO.
- Even in the weak-coupling limit we can achieve "hydrodynamization"; strongly coupled framework not required

If you want to learn more about instabilities

Color Instabilities in the Quark-Gluon Plasma 1603.08946
Stanisław Mrówczyński
Institute of Physics, Jan Kochanowski University, ul. Świętokrzyska 15, PL - 25-406 Kielce, Poland and National Centre for Nuclear Research, Warsaw, Poland, ul. Hoża 69, PL - 00-681 Warsaw, Poland
Björn Schenke
Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973, USA
Michael Strickland
Kent State University, Kent, OH 44240, USA and Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany
(Dated: March 29, 2016)

- 104 pages
- 584 equations (!)
- 49 figures
- 8 years to complete (!)

Happy Birthday Stan!

M. Strickland