

Harrison B. Prosper, Florida State University Omar Zapata Mesa, University of Antioquia

Outline

- Motivation
- What is Falcon
- Results
- Plans and Outlook

Motivation

- LHC is taking data again
 - in Discovery mode
 - until compelling evidence of new physics is found
 - Compare thousands of experimental results with theoretical predictions of thousands of models
 - Make quantitative statements about their validity

Experiment & Theory

Compare experimental results with theoretical predictions

- Two approaches:
 - Fold theoretical predictions with detector effects and compare folded predictions with experimental results
 - Unfold detector effects from experimental results and compare unfolded results directly with predictions

Folding vs. Unfolding

- Both have pros and cons
 - Folding is typically preferred
 - technically easier when experimental results are multi-dimensional
 - Price to pay:

- Computation time
- Codes generally not publically available (or require knowledge and expertise not available outside an experimental collaboration)

Folding

Approximate Multidimensional Function:

 $p(rparticles \mid \theta) = \int R(rparticles \mid particles) H(particles \mid partons) P(partons \mid \theta)$

 Probability density to observe collection of reconstructed particles (rparticles) for point θ in given model's parameter space

Folding

Approximate Multidimensional Function:

 $p(rparticles \mid \theta) = \int R(rparticles \mid particles) H(particles \mid partons) P(partons \mid \theta)$

- P(partons $| \theta$): parton level theory prediction
- H(particles | partons): parton to particle level mapping or hadronization
- R(rparticles | particles): detector response

Approximate this function with matrix element methods

 $p(rparticles \mid \theta) = \int R(rparticles \mid particles) H(particles \mid partons) P(partons \mid \theta)$

- Requires highly parallel computing
- Empirical functions that approximate detector response don't fully capture non-Gaussian effects
 - For ex. CMS jet response function is non-Gaussian
- For accurate detector effects:
 - Monte Carlo simulation

UF Monte Carlo Simulation

If you need to simulate hundreds of thousands events for 1k-100k points in a model's parameter space

 You are generally out of luck (computationally)

Or perhaps, not?

Single hadronic shower

Fast Simulation

These difficulties spurred development of fast detector simulators which, like the matrix element method, approximate the detector response (R) parametrically

- Delphes, J. de Favereau et al, JHEP 02 2014 057, a good example of state of the art
 - Parametrize detector response

Delphes

- Start with simulated events at particle level
- Replace Monte Carlo simulation of detector with random sampling from R

Example: Jets

- Apply resolution or smearing function to genjets
 - jets reconstructed at particle level
- Cluster on calo-towers
- Speed of event generation
 - Goes up 3 orders of magnitude for HL-HLC type pileup (from 1ms/event@PU0 to 1s/event @PU150)

Parametric FastSim

- Need to hand-code the form of detector response function
 - Detectors change
 - Experimental conditions change
 - non-Gaussian effects become important
 - Must re-code the response function
- Response function form is different from experiment to experiment
- Fast enough?

- Not a NEW IDEA
 - Successfully applied at CDF, D0, HERA and others
 - First by Rajendran Raja in late 80s-1990, then B. Knuteson et al. (implementation called Turbosim)
- Falcon is a modern implementation of its non-parametric predecessors
 - Using novel ideas and programming methods

- Simulator that does not require hand-coded detector response
- Learns the response function
 - Extracts from millions of fully-simulated events already available
 - Extremely fast to apply
 - generate events at the order $> 10^4/s$
 - Independent of pileup

Speed vs. Accuracy

- Typical dilemma
 - Extremely fast → sacrifice accuracy
 - Extremely accurate → sacrifice speed
 - Find a good balance of both

Falcon's Goal

Substantially increase the rate at which events are simulated

- Faster than current fast simulators by reasonable factor
- At least as accurate as these hand-built simulators
 - For example DELPHES
 - Eliminate need to implement mapping by hand
 - Without sacrificing accuracy

Falcon

Builder

- Abstracts detector response from fullysimulated events
- Creates non-parametric representation database (one per flavor)

Simulator

• Uses this database to simulate events at reconstruction level from parton level

Falcon

- Maps partons to reco-level objects automatically taking into account inefficiencies
- Extremely fast
 - look-up techniques
- Tool with as few knobs to tune as possible
- The more events in the database, finer granularity the better it performs

Proof of Principle

- Leptons are relatively easy to accurately simulate
 - Jets are hard(er)
 - Start with Jets
 - Consider a Model of Heavy Neutral (2.9TeV)
 Higgs at 13TeV LHC
 - Decays to bottom quarks (50%)
 - Decays to taus (12%)

Goal: reproduce P_T spectra of 3 highest P_T jets using Falcon

Results

Results

Delphes Falcon

Very good agreement

Example

pMSSM

- phenomenological Minimal Supersymmetric Standard Model pMSSM
- 19 dimensional space
- No GUT scale assumptions or simplifications
 - as few assumptions as possible at electroweak scale
- Want to take these high-dimensional models seriously
 - and make realistic statements about them based on data

pMSSM

- arXiv:1606.03577
- CMS Run 1 Analysis
- 19 dimensional space
 - enough density of points to make a realistic statement
 - 1000 points: 10k events each That's too low.
 - O(1-10b) to make a good scan
 - $-400 \text{ev/s} \rightarrow 1 \text{b event/month}$

Outlook

Accuracy

- Make use of existing simulated events
- Increase density of what is stored
- Finer granularity of binning in parton space higher fidelity

Speed

Parallel look-up

Outlook (2)

Mapping

- Best way to perform the mapping
 - Naïve
 - ΔR threshold (per species) resulting in a 1 to N map
 - implemented
 - Alternative
 - from a single parton a tree of objects with probability quantifying a degree of match
 - User can choose a cut on this probability (or none)

Summary

- Falcon ultrafast non-parametric detector simulation
- A modern take on an old idea
- Our studies suggest it works well
- As 750GeV bump has shown, low hanging fruit is elusive. Will have to deal with more difficult regions and multi-parameter models
 - Having fast and accurate simulation at hand is critical to the evaluation of multi-parametric models with data from LHC
- More about Falcon: <u>arXiv:1605.02684</u>
- Inputs and suggestions are welcome

Backups

KDTreeBinning

KDTree is a data structure

- k-dimensional tree
- special case of binary partitioning
- resulting bins have same number of events

FALCON uses KDTreeBinning in ROOT to store and partition data

Added more functionality to the class