
High-level analysis scripts
with low-level performance

Jim Pivarski

Princeton University – DIANA

June 20, 2016

1 / 42

This talk is about a future project I’m working toward.

Goals:

I to increase the separation between physics-relevant concepts
and low-level computing details

I without sacrificing computational performance; in most cases,
improving it.

2 / 42

This talk is about programming languages because languages are
the user interface of data analysis.

The same is true in industry:

I business intelligence speaks SQL,

I statisticians speak R and SAS,

I financial analysts write extensive Excel macros. . .

3 / 42

The choice of language matters

All programming
languages fill the
“space of possible
programs” because
they’re Turing
complete.

However, different
languages are like
different metrics on
this space.

A small change in
one is a big change
in another.

4 / 42

Evolution of language choice

High energy physics

Decades of Fortran, transitioned to C++ in late ’90s, may be
leaning towards Python now.

Data science in industry

Big Data/Hadoop grew out of web development: distributed
systems in Java.

Now involves more machine learning and statistics, so shift toward
Scala on the JVM, Python for Scikit-Learn, and R.

fast, powerful, "close to the metal" flexible, dynamic, or convenient

machine code,
assembly

regex, JSON,
config files...

"interpreted"
Python, R,
Javascript

"managed"
Java, C#,

Scala

"native"
C, C++,
Fortran

5 / 42

Abstractions versus performance?

Experience tells us that low-level is fast and high-level is slow.

http://benchmarksgame.alioth.debian.org/

6 / 42

http://benchmarksgame.alioth.debian.org/

Domain-Specific Languages (DSLs)

But it doesn’t have to be:
intentionally restricting
the scope of the language
allows more optimization.

Prime example: SQL.

But also:

I Fortran’s lack of
(aliasable) pointers

I regular expressions for
string manipulation

I Numpy in Python

I Histogrammar. . .

7 / 42

More accurate statement

High-level abstractions + complete generality is slow.

High-level abstractions + restricted domain

I can be as fast as a custom-tuned program (especially with JIT),

I but with better separation of domain knowledge from
computing details.

A well-designed DSL can encourage exploration of the problem
space (physics) while the backend optimizes performance.

(A poorly designed DSL can make it impossible to get work done!)

8 / 42

More accurate statement

High-level abstractions + complete generality is slow.

High-level abstractions + restricted domain

I can be as fast as a custom-tuned program (especially with JIT),

I but with better separation of domain knowledge from
computing details.

A well-designed DSL can encourage exploration of the problem
space (physics) while the backend optimizes performance.

(A poorly designed DSL can make it impossible to get work done!)

9 / 42

Goals for my future project

I plan to design a domain specific language for end-user physics
analysis scripts with the following properties:

I a subset of or based on Python syntax

I non-exclusive: mix with normal (slow) Python

I immutable, maybe total-functional (next slide)

I very strongly typed, but only through inference (next2 slide)

I manual optimizations via CSS-style selectors (next3 slide)

I supporting imperative idioms through patterns (next4 slide)

Scope: only the data manipulation, not whole applications

Backends: convert to C, CUDA/OpenCL, or Verilog/HDL for a
traditional compiler to compile (“transpiling to C”)

Stepping stone: Histogrammar, my histogram-aggregation DSL, is
being used to test some of the basic ideas.

10 / 42

Goals for my future project

I plan to design a domain specific language for end-user physics
analysis scripts with the following properties:

I a subset of or based on Python syntax

I non-exclusive: mix with normal (slow) Python

I immutable, maybe total-functional (next slide)

I very strongly typed, but only through inference (next2 slide)

I manual optimizations via CSS-style selectors (next3 slide)

I supporting imperative idioms through patterns (next4 slide)

Scope: only the data manipulation, not whole applications

Backends: convert to C, CUDA/OpenCL, or Verilog/HDL for a
traditional compiler to compile (“transpiling to C”)

Stepping stone: Histogrammar, my histogram-aggregation DSL, is
being used to test some of the basic ideas.

11 / 42

Goals for my future project

I plan to design a domain specific language for end-user physics
analysis scripts with the following properties:

I a subset of or based on Python syntax

I non-exclusive: mix with normal (slow) Python

I immutable, maybe total-functional (next slide)

I very strongly typed, but only through inference (next2 slide)

I manual optimizations via CSS-style selectors (next3 slide)

I supporting imperative idioms through patterns (next4 slide)

Scope: only the data manipulation, not whole applications

Backends: convert to C, CUDA/OpenCL, or Verilog/HDL for a
traditional compiler to compile (“transpiling to C”)

Stepping stone: Histogrammar, my histogram-aggregation DSL, is
being used to test some of the basic ideas.

12 / 42

Goals for my future project

I plan to design a domain specific language for end-user physics
analysis scripts with the following properties:

I a subset of or based on Python syntax

I non-exclusive: mix with normal (slow) Python

I immutable, maybe total-functional (next slide)

I very strongly typed, but only through inference (next2 slide)

I manual optimizations via CSS-style selectors (next3 slide)

I supporting imperative idioms through patterns (next4 slide)

Scope: only the data manipulation, not whole applications

Backends: convert to C, CUDA/OpenCL, or Verilog/HDL for a
traditional compiler to compile (“transpiling to C”)

Stepping stone: Histogrammar, my histogram-aggregation DSL, is
being used to test some of the basic ideas.

13 / 42

Immutable, maybe total-functional

“Functional programming” eliminates mutable program state:

I output of functions depend strictly on their inputs

I x = x + 1 is a false mathematical statement

I assignments form a time-independent graph, may be written
in any order and backend may execute in any order

I backend may substitute mutable data structures by analyzing
(or temporally rearranging) the assignment graph

I good for concurrency (no locks)

“Total functional programming” also eliminates unbounded loops
and exceptions:

I programs are known to halt (not Turing complete), maybe
even with time estimates from static analysis

I exactly model mathematical functions: f : D → R

14 / 42

Immutable, maybe total-functional

“Functional programming” eliminates mutable program state:

I output of functions depend strictly on their inputs

I x = x + 1 is a false mathematical statement

I assignments form a time-independent graph, may be written
in any order and backend may execute in any order

I backend may substitute mutable data structures by analyzing
(or temporally rearranging) the assignment graph

I good for concurrency (no locks)

“Total functional programming” also eliminates unbounded loops
and exceptions:

I programs are known to halt (not Turing complete), maybe
even with time estimates from static analysis

I exactly model mathematical functions: f : D → R

15 / 42

Strongly typed through inference

Type check is a formal proof that program is free of certain errors.

Scala example (eliminates runtime null pointer exceptions):

val numberOrNone: Option[Double] = Some(3.14)
val cosx = numberOrNone match {

case Some(x) => cos(x)
case None => -999.0

}

// or better
val cosxOrNone = numberOrNone.map(cos(_))

// but cos(numberOrNone) would be a compiler error

16 / 42

Strongly typed through inference

I numberOrNone is a value from the set R ∪ {None}.

I One could catch division-by-zero errors in the same way by
considering sets like R ∪ {−∞,∞}.

I For physics applications, it could be useful to consider any
interval, like [−3, 8] ∩ Z or [0,∞), as “data types.”

I This is like an extreme form of int versus unsigned int.
I Useful feedback to the data analyst: “Why does my function

output have such a large range?”
I Could even be used to set bit widths for an FPGA backend.
I I have implemented this for +, −, ∗, /, ∗∗, and modular

arithmetic with 6k lines of unit tests. Extending to continuous
functions will involve searches for inflection points.

I Inference only: intervals specified on input arguments,
everything else inferred. The compiler should be telling the
user what the domains are, not the other way around. (Being
purely functional helps this.)

17 / 42

Strongly typed through inference

I numberOrNone is a value from the set R ∪ {None}.
I One could catch division-by-zero errors in the same way by

considering sets like R ∪ {−∞,∞}.

I For physics applications, it could be useful to consider any
interval, like [−3, 8] ∩ Z or [0,∞), as “data types.”

I This is like an extreme form of int versus unsigned int.
I Useful feedback to the data analyst: “Why does my function

output have such a large range?”
I Could even be used to set bit widths for an FPGA backend.
I I have implemented this for +, −, ∗, /, ∗∗, and modular

arithmetic with 6k lines of unit tests. Extending to continuous
functions will involve searches for inflection points.

I Inference only: intervals specified on input arguments,
everything else inferred. The compiler should be telling the
user what the domains are, not the other way around. (Being
purely functional helps this.)

18 / 42

Strongly typed through inference

I numberOrNone is a value from the set R ∪ {None}.
I One could catch division-by-zero errors in the same way by

considering sets like R ∪ {−∞,∞}.
I For physics applications, it could be useful to consider any

interval, like [−3, 8] ∩ Z or [0,∞), as “data types.”

I This is like an extreme form of int versus unsigned int.
I Useful feedback to the data analyst: “Why does my function

output have such a large range?”
I Could even be used to set bit widths for an FPGA backend.
I I have implemented this for +, −, ∗, /, ∗∗, and modular

arithmetic with 6k lines of unit tests. Extending to continuous
functions will involve searches for inflection points.

I Inference only: intervals specified on input arguments,
everything else inferred. The compiler should be telling the
user what the domains are, not the other way around. (Being
purely functional helps this.)

19 / 42

Strongly typed through inference

I numberOrNone is a value from the set R ∪ {None}.
I One could catch division-by-zero errors in the same way by

considering sets like R ∪ {−∞,∞}.
I For physics applications, it could be useful to consider any

interval, like [−3, 8] ∩ Z or [0,∞), as “data types.”
I This is like an extreme form of int versus unsigned int.
I Useful feedback to the data analyst: “Why does my function

output have such a large range?”
I Could even be used to set bit widths for an FPGA backend.
I I have implemented this for +, −, ∗, /, ∗∗, and modular

arithmetic with 6k lines of unit tests. Extending to continuous
functions will involve searches for inflection points.

I Inference only: intervals specified on input arguments,
everything else inferred. The compiler should be telling the
user what the domains are, not the other way around. (Being
purely functional helps this.)

20 / 42

Strongly typed through inference

I numberOrNone is a value from the set R ∪ {None}.
I One could catch division-by-zero errors in the same way by

considering sets like R ∪ {−∞,∞}.
I For physics applications, it could be useful to consider any

interval, like [−3, 8] ∩ Z or [0,∞), as “data types.”
I This is like an extreme form of int versus unsigned int.
I Useful feedback to the data analyst: “Why does my function

output have such a large range?”
I Could even be used to set bit widths for an FPGA backend.
I I have implemented this for +, −, ∗, /, ∗∗, and modular

arithmetic with 6k lines of unit tests. Extending to continuous
functions will involve searches for inflection points.

I Inference only: intervals specified on input arguments,
everything else inferred. The compiler should be telling the
user what the domains are, not the other way around. (Being
purely functional helps this.)

21 / 42

Optimizations via CSS-style selectors

High-level code is frustrating when it takes away the ability to
manually optimize.

The point is not to make the physicist unaware of the low-level
details, just to remove the necessity of thinking about both at the
same time.

(You don’t have to think about nuclear physics when studying
atomic structure, but that doesn’t mean you can’t know about
nuclear physics!)

22 / 42

Optimizations via CSS-style selectors

High-level code is frustrating when it takes away the ability to
manually optimize.

The point is not to make the physicist unaware of the low-level
details, just to remove the necessity of thinking about both at the
same time.

(You don’t have to think about nuclear physics when studying
atomic structure, but that doesn’t mean you can’t know about
nuclear physics!)

23 / 42

Optimizations via CSS-style selectors

Take a hint from HTML+CSS, which separates structure from
style by putting them in two separate files:

HTML file

<html>
<body>

<ul id="bulleted-list">
<li class="first">one
<li class="rest">two
<li class="rest">three

unaffected

</body>

</html>

CSS file

#id { border: solid 1px
red; }

ul li { color: blue; }

li.first { font-weight:
bold; }

.rest { text-decoration:
underline; }

24 / 42

Optimizations via CSS-style selectors

Consider a variant of CSS selectors that picks program elements
and applies optimization hints:

Correctness

type declarations as Python3
argument decorations

def doWeirdStuff(
x: [-10, 10],
xs: list(size=[1, inf],

data=[-5, 5])):

function body
xs2 = xs.appended(xs[0])

return xs2.appended(x / 2)

Performance

/* only affects x in doWeirdStuff,
not other functions */

doWeirdStuff x {
data-type: signed char;

}

/* implies that xs2 is also a
mutable linked list */

xs {
data-type: mutable linked list;
storage: contiguous obstack;

}

Status: not deeply thought-through yet.

25 / 42

Imperative idioms through patterns

Problem with Python

Large-scale syntax isn’t suited for functional programming:

I control in statements, not expressions

I cannot put statements in lambda functions

Problem with anything else

Unfamiliar to physicists: yet another language!

Besides, Python’s expression syntax is excellent, want to keep that.

26 / 42

Imperative idioms through patterns

Imperative code, the way Python
was meant to be used:

def function(x: (-inf, inf)):
if x > 0:

y = 1
elif x < 0:

y = -1
else:

y = 0

tenOfThem = []
for i in range(10):

tenOfThem.append(y)
return tenOfThem

Functional code, the way I’d
want to use it:

def function(x: (-inf, inf)):
y = 1 if x > 0 else

-1 if x < 0 else
0

tenOfThem = range(10) \
.map(lambda i: y)

return tenOfThem

I have to think backwards to read the one on the right.

27 / 42

Imperative idioms through patterns

Imperative code, the way Python
was meant to be used:

def function(x: (-inf, inf)):
if x > 0:

y = 1
elif x < 0:

y = -1
else:

y = 0

tenOfThem = []
for i in range(10):

tenOfThem.append(y)
return tenOfThem

Functional code, the way I’d
want to use it:

def function(x: (-inf, inf)):
y = 1 if x > 0 else

-1 if x < 0 else
0

tenOfThem = range(10) \
.map(lambda i: y)

return tenOfThem

But suppose the left is recognized as “idioms” and translated?

I if statements where every branch defines the same symbol

I for loops that only append to a list

28 / 42

Transpiling in Histogrammar

Histogrammar is a DSL with a much smaller scope (making
histograms in distributed systems).

Deeply nested structure is a nice abstraction, but it’s surely slower
than filling an array.

directory_of_histograms =
Label(

one = Select(lambda d: d.trigger > 5,
Bin(100, 0, 80, lambda d: d.pt, Count())),

two = Select(lambda d: d.pt > 30,
Bin(100, 0, 120, lambda d: d.met, Count()))

)

Transparent speed-up: JIT compilation
http://github.com/diana-hep/histogrammar/scala-jit

transpiles the histogram structure into explicit C code, compiles it,
and runs it.

29 / 42

http://github.com/diana-hep/histogrammar/scala-jit

Transpiling in Histogrammar

Histogrammar is a DSL with a much smaller scope (making
histograms in distributed systems).

Deeply nested structure is a nice abstraction, but it’s surely slower
than filling an array.

directory_of_histograms =
Label(

one = Select(lambda d: d.trigger > 5,
Bin(100, 0, 80, lambda d: d.pt, Count())),

two = Select(lambda d: d.pt > 30,
Bin(100, 0, 120, lambda d: d.met, Count()))

)

Transparent speed-up: JIT compilation
http://github.com/diana-hep/histogrammar/scala-jit

transpiles the histogram structure into explicit C code, compiles it,
and runs it.

30 / 42

http://github.com/diana-hep/histogrammar/scala-jit

Transpiling in Histogrammar

Auto-generated C code operates on batches of data, batches of
histograms, by casting pointers in a contiguous malloc block.
#include <inttypes.h>
#include <math.h>

uint64_t loop(void *dataBatch, void *storageBatch, int32_t inputBufferFill) {
uint64_t storagePointer;
uint64_t BinningUnwind_0;
double BinningQuantity_0;
int32_t BinningBin_0;
for (int32_t rowIndex = 0; rowIndex < inputBufferFill; ++rowIndex) {

storagePointer = (uint64_t)storageBatch;
// Binning unwind-protect
BinningUnwind_0 = storagePointer;
BinningQuantity_0 = (*((double*)(dataBatch + 0 + rowIndex*8)));
if (BinningQuantity_0 != BinningQuantity_0) {

// Binning.nanflow
storagePointer += 816;
// Counting.entries without weight
++(*((int32_t*)storagePointer));
storagePointer += 8;

}
else {

BinningBin_0 = (int32_t)floor(100 * (BinningQuantity_0 - 0.0) * 0.0125);
if (BinningQuantity_0 == -INFINITY || BinningBin_0 < 0) {

// Binning.underflow
storagePointer += 800;
// Counting.entries without weight
++(*((int32_t*)storagePointer));

31 / 42

Transpiling in Histogrammar

The whole workflow (calculating data in Scala, copying to
off-heap, filling histograms, bringing back results):

#histograms #entries naive Scala JIT C

1 10,000,000 13 seconds 0.81 seconds

100 100,000 27 seconds 0.75 seconds

Just the tight loop around filling (pull data from an array) and
using cling instead of tcc:

#histograms #entries JIT C ROOT

1 100,000,000 0.74 seconds 2.2 seconds

100 1,000,000 0.44 seconds 2.2 seconds

32 / 42

Prior art: tools to use & interoperate with

Cython: adds performance hints to Python so that it can be
more easily compiled into extension modules (C code for gcc).

33 / 42

Prior art: tools to use & interoperate with

Numba: propagates Numpy types through a Python function to
produce LLVM bytecode for JIT compilation.

34 / 42

Prior art: tools to use & interoperate with

SymPy: symbolic algebra system in Python (expression graph is
a functional program, which can be simplified).

Theano: matrix expression compiler with CPUs and GPUs.

35 / 42

Prior art: tools to use & interoperate with

PyCUDA/PyOpenCL: dispatches kernels to GPU.

CodePy: AST for CUDA/OpenCL (same author).

36 / 42

Recap

High-level abstractions are not inconsistent with computational
performance when the problem domain is sufficiently restricted.

I’m planning to expand my current work from histogramming
abstractions to a domain specific language for physics analysis
that is:

I familiar enough to be used by physicists

I designed around the specific needs of physics analysis

I transpiled to highly performant code.

37 / 42

Greg Owen’s talk on JIT in Spark 2.0

38 / 42

Greg Owen’s talk on JIT in Spark 2.0

39 / 42

Greg Owen’s talk on JIT in Spark 2.0

40 / 42

Greg Owen’s talk on JIT in Spark 2.0

41 / 42

Greg Owen’s talk on JIT in Spark 2.0

42 / 42

