

In Search of Charged Lepton Flavor Violating Decays at PSI

Giada Rutar Paul Scherrer Institut and ETH Zürich on behalf of the MEG and Mu3e Collaborations

Why cLFV?

Lepton Flavor Violation observed in the **neutral** sector (v-oscillations)

What about **charged** Lepton Flavor Violation? Standard Model with massive neutrinos:

A cLFV signal would be clear evidence for new physics! And if we don't observe it: Constrain new physics models

23.08.16

cLFV Experiments at the Paul Scherrer Institute

World's most intense continuous muon beams $O(10^8) \mu/sec \rightarrow$ a unique place for cLFV searches!

Picture credits: Paul Scherrer Institut

cLFV Experiments at the Paul Scherrer Institute

World's most intense continuous muon beams $O(10^8) \mu/sec \rightarrow$ a unique place for cLFV searches!

1.4 MW power

The MEG Experiment

Signal Signature

2-body-decay with e⁺ and y

- back-to-back ($\Theta_{ev} = 0$)
- time-coincident ($t_{ev} = 0$)
- monochromatic $(E_{y}=E_{e+}=52.8 \text{ MeV})$

Backgrounds

Radiative Muon Decay

The MEG Experiment

Final MEG Result

Best fitted BR consistent with the null-signal hypothesis

$$\mathcal{B}(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$$

90% C.L. upper limit on the BR

Full data set 2009-2013

 $= 7.5 \times 10^{14} \mu^+$ stopped on target

Sensitivity: 5×10^{-13}

Eur. Phys. J. C (2016) 76:434

The Mu3e Experiment

Signal Signature

3-body-decay

- $\Sigma E_i = m_\mu$
- $\Sigma p_i = 0$
- time-coincident

Backgrounds

Internal Conversion

Experimental Layout (Phase I) 110 cm **Recurl pixel layers** Scintillator tiles Inner pixel layers ~ 10⁸ µ⁺/s 🛓 🛛 🛓 🛓 ~ 15 cm Target (phase I) Scintillating fibres Outer pixel layers

Phase I: Sensitivity goal ~ 10^{-15} , $10^8 \mu^+/s$ Phase II: Sensitivity goal ~ 10^{-16} , $10^9 \mu^+/s$

Experimental Layout (Phase I)

Scintillating Fiber Detector:

- Rejection of accidental background
- Unambiguous silicon hit assignment to tracks

Experimental Layout (Phase I)

Experimental Layout (Phase I)

Scintillating Fiber Detector

Requirements:

- timing resolution < 1 ns
- detection efficiency ~100 %
- as little material as possible (multiple scattering) \rightarrow 3-4 layers of 250 µm thin fibers

Baseline design:

~4'500 fibers of ~30 cm length arranged in ribbons, read out by Silicon Photomultiplier (SiPMs) arrays on both fiber ends

not so easy.... expected energy deposit (MIP) ~ O(50 keV)handful detected photons per fiber layer

Prototype Studies

Bottom – up – approach

Hamamatsu 13360-1350-CS 23.08.16

Each fiber is ...

- ... 250 µm thin, squared, multiclad (Saint-Gobain BCF-12)
- ... read out by a SiPM on each of the two ends

Prototype"

... coated with 100 nm Al to optically isolate the fibers (crosstalk among fibers < 1 %)

Prototype Studies The Large Prototype

Several **test beam campaigns** at PSI beam lines (e, μ , π) and studies in the **laboratory** with a ⁹⁰Sr source:

- Assess individual fiber performance
- Combine offline information from several SiPMs to mimick a Mu3e fiber ribbon

32 fibers, 64 channels

Prototype Studies

Three layers of fibers, "optimized array readout"

- Efficiency > 95%
- Timing performance: σ_t ~ 550 ps
- Ca. 11 photons per array channel (left + right)

threshold 0.5 Nphe

Summary

- cLFV rare decay searches represent a powerful tool to look for new physics
- Paul Scherrer Institute: Searches for cLFV decays of the muon:
 - **MEG/ MEG II:** Most stringent upper limit on the $\mu \rightarrow e_{\chi}$ branching ratio, upgraded experiment is about to start

$$B(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$$
 @ 90% C.L.

Eur. Phys. J. C (2016) 76:434

• **Mu3e:** Upcoming experiment looking for $\mu^+ \rightarrow e^+e^-e^+$ with a sensitivity goal of 10⁻¹⁵ during its first phase (~ 2018 onwards)