

CURRENT STATUS AND PLANS OF THE GERDA EXPERIMENT

R. Mingazheva for the GERDA collaboration

University of Zurich

 $23~{\rm Aug}~2016$

Rizalina Mingazheva — Aug 23rd, 2016

The Gerda experiment

Motivation for $0\nu\beta\beta$ searches. Double beta decay

Motivation for $0\nu\beta\beta$ searches

- $A(Z, N) \rightarrow A(Z+2, N) + 2e^{-}$
- Hypothetical non-SM process, $\Delta L=2$
- $\bar{\nu} = \nu, m_{\nu} \neq 0$
- e.g. light Majorana neutrino exchange

Rizalina Mingazheva — Aug 23rd, 2016 The Gerda experiment

Motivation for $0\nu\beta\beta$ searches

- $A(Z, N) \rightarrow A(Z+2, N) + 2e^{-}$
- Hypothetical non-SM process, $\Delta L=2$
- $\bar{\nu} = \nu, \, m_{\nu} \neq 0$
- e.g. light Majorana neutrino exchange

Rizalina Mingazheva — Aug 23rd, 2016

The Gerda experiment

How to claim a discovery?

• Signal/background

$$\begin{split} N_{sig} \approx \frac{Mt}{m_{iso}} \cdot \alpha \cdot \epsilon \cdot \frac{ln(2)}{T_{1/2}^{0\nu}} \\ N_{bg} \approx BI \cdot \Delta E \cdot Mt \end{split}$$

• We claim a discovery with 99.7% CL when:

$$N_{sig} \ge 3\sigma_{bg}$$
, where $\sigma_{bg} \approx \sqrt{N_{bg}}$

$$T^{0\nu}_{1/2} \propto \epsilon \sqrt{\frac{Mt}{BI \cdot \Delta E}}$$

• Background-free case:

 $T_{1/2}^{0\nu} \propto \epsilon \cdot Mt$

⁷⁶Ge detectors

- High intrinsic purity
- $Q_{\beta\beta} = 2039 \text{ keV}$
- Best energy resolution (3-4 keV at $Q_{\beta\beta}$)
- $\bullet~86\%$ enrichment of $^{76}\mathrm{Ge}$

Rizalina Mingazheva — Aug 23rd, 2016

The Gerda experiment

How to claim a discovery?

GERmanium Detector Array (GERDA)

- LNGS underground laboratory:
 - covered by 1400m rock
 - reduced muon flux ($\approx 1 \cdot m^{-2} h^{-1}$)

Background rejection

- Active veto:
 - Water tank: $\oslash = 10m$
 - LAr cryostat: $\oslash = 4m$
- Ultra-clean materials

ヨト・イヨト

= ~ ~ ~

• High-pure ⁷⁶Ge detectors

⁷⁶Ge detectors in GERDA

- Coaxial detectors (from HdM, IGEX)
 - $\bullet\,$ Enriched: 7 detectors, $15\,\mathrm{kg}$ total mass
 - Natural: 3 detectors, 7 kg total mass

- BEGe (Broad Energy Germanium) detectors (produced by Canberra)
 - $\bullet~30$ detectors, $20\,{\rm kg}$ total mass
 - higher energy resolution
 - better background events discrimination

GERDA stability control

- Weekly calibration using ²²⁸Th source
- Monitoring of energy scale stability

[G. Benato. Doctoral thesis]

Rizalina Mingazheva — AUG 23rd, 2016 THE GERDA EXPERIMENT 7/12

GERDA stability control

- Weekly calibration using ²²⁸Th source
- Monitoring of energy scale stability

[G. Benato. Doctoral thesis]

- During the calibration each source is lowered to the required position
- During the physics data taking sources are kept shielded in the position above ⁷⁶Ge strings

GERDA Phase I. Results

Nov 2011 - May 2013

- $\bullet~15~{\rm kg}$ of $^{76}{\rm Ge}$
- Exposure: 21.6 kg·yr

ROI: $Q_{\beta\beta} \pm 5 \text{keV}$

- Blind analysis
- $N_{exp} = 2.0 \pm 0.3$
- $N_{obs} = 3$
- Profile LL: $N_{0\nu}=0$

- No $0\nu\beta\beta$ observation
- BI: $1 \cdot 10^{-2}$ cts/(keV·kg·yr)
- $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{yr}$ world best limit for ^{76}Ge

Rizalina Mingazheva — Aug 23rd, 2016

Transition to Phase II

Upgrades

- Increased mass of BEGe detectors
- Reduce close background sources: cleaner materials
- LAr veto to reject external background:
 - 16 PMT
 - SiPM and optics fiber read out

Phase II goals

- Background $< 10^{-3} \ {\rm cts}/({\rm keV \cdot kg \cdot yr})$
- Exposure $\geq 100 \text{ kg} \cdot \text{yr}$
- Sensitivity $T_{1/2}^{0\nu} > 10^{26} yr$

9/12

글 네 ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ

= 200

Phase II. First unblinding

BEGe

- exposure: 5.8 kg·yr
- in the $Q_{\beta\beta} \pm 25$ keV:

•
$$N_{exp}^{bg} = 0.3$$

•
$$N_{obs} = 0$$

• BI =
$$7^{+11}_{-5} \cdot 10^{-4}$$

Coaxial

• exposure: 5.0 kg·yr

• In the
$$Q_{\beta\beta} \pm 25$$
 keV:

• BI =
$$35^{+21}_{-15} \cdot 10^{-4}$$

BI is shown in the units $cts/(keV \cdot kg \cdot yr)$

Dec. 2015 - May 2016

Rizalina Mingazheva — Aug 23rd, 2016

The Gerda experiment

10/12

Conclusion & outlook

- Achieved lowest ever background: $\frac{\overline{\text{BEGe:}}}{7^{+11}_{-5} \cdot 10^{-4} \text{ cts/(keV \cdot kg \cdot yr)}}$ $\frac{\text{Coax:}}{35^{+21}_{-15} \cdot 10^{-4} \text{ cts/(keV \cdot kg \cdot yr)}}$
- No evidence for $0\nu\beta\beta$ found
- $T_{1/2}^{0\nu} > 5.2 \cdot 10^{25} \, yr \ (90\% \text{ C.L.})$
- $|m_{ee}| < [160, 260] \text{ meV} (90\% \text{ C.L.})$
- Goal: total exposure of 100 kg·yr and sensitivity $T_{1/2}^{0\nu} > 10^{26}$ yr

[Talk at Neutrino 2016]

Follow us: it will be published soon!

BackUp: Neutrino Double Beta Decay

- Postulated in 1935
- First observation in 1980s
- Can occure if single beta decay is forbidden due to spin-coupling, seen by the pairing term in the semi-empirical mass formula.

•
$$T_{1/2}^{2\nu\beta\beta} \approx (10^{18} - -10^{24})yr$$

$$M(\mathbf{A}, \mathbf{Z}) = \mathbf{Z}m_p + Nm_n - a_V \mathbf{A} + a_S \mathbf{A}^{2/3} + a_C \frac{\mathbf{Z}^2}{\mathbf{A}^{1/3}} + a_A \frac{(N-\mathbf{Z})^2}{\mathbf{A}} + \delta(\mathbf{A}, \mathbf{Z})$$

= ~~~

Backup: Signal and background events topology

Signal

Localized energy deposition within ≈ 1 mm in one detector (Single Side Events [SSE])

Background

- Multiple energy deposition in one detector (Multi Side Events, removed by Pulse Shape Discrimintaion [PSD])
- Events with coincident energy deposition in the LAr (active veto)

Surface events

• fast
$$(p^+)$$
 and slow (n^+) rising signals (PSD)

BackUp: Isotopes DBD

Main positive results for $2\nu\beta\beta$ to the ground state

Isotope	Experiment (type)	$T_{1/2}(2\nu)$ (years)	Reference(s)
⁴⁸ Ca	Hoover Dam (TPC)	$[4.3^{+2.4}_{-1.1} (\text{stat.}) \pm 1.4 (\text{syst.})] \times 10^{19}$	35
	TGV (planar HPGe)	$(4.2^{+3.3}) \times 10^{19}$	36
	NEMO3 (track calorimeter)	$(4.4 \pm 0.64) \times 10^{19}$	34
⁷⁶ Ge	IGEX (HPGe)	$(1.45 \pm 0.15) \times 10^{21}$	48
	Heidelberg-Moscow (HPGe)	$[1.74 \pm 0.01 \text{ (stat.)}^{+0.18}_{-0.16} \text{ (syst.)}] \times 10^{21}$	49
	GERDA (HPGe)	$1.84^{+0.14}_{-0.10} \times 10^{21}$	28
⁸² Se	Geochemistry	$(1.3 \pm 0.05) \times 10^{20}$	50
	NEMO3 (track calorimeter)	$[0.96 \pm 0.03 \text{ (stat.)} \pm 0.1 \text{ (syst.)}] \times 10^{20}$	51
⁹⁶ Zr	Geochemistry	$(3.9 \pm 0.9) \times 10^{19}$	52
	Geochemistry	$(0.94 \pm 0.32) \times 10^{19}$	53
	NEMO3 (track calorimeter)	$[2.35 \pm 0.14 \text{ (stat.)} \pm 0.16 \text{ (syst.)}] \times 10^{19}$	54
^{100}Mo	Geochemistry	$(2.1 \pm 0.3) \times 10^{18}$	55
	Hoover Dam (TPC)	$[6.82^{+0.38}_{-0.53} (\text{stat.}) \pm 0.68 (\text{syst.})] \times 10^{18}$	56
	DBA (liquid argon TPC)	$[7.2 \pm 1.1 \text{ (stat.)} \pm 1.8 \text{ (syst.)}] \times 10^{18}$	57
	NEMO3 (track calorimeter)	$[7.17 \pm 0.01 \text{ (stat.)} \pm 0.54 \text{ (syst.)}] \times 10^{18}$	34
¹¹⁶ Cd	Solotvina (scintillator)	$[2.9 \pm 0.06 (\text{stat.})^{+0.4}_{-0.3} (\text{syst.})] \times 10^{19}$	37
	NEMO3 (track calorimeter)	$(2.88 \pm 0.17) \times 10^{19}$	34
¹²⁸ Te	Geochemistry	$\sim 2.2 \times 10^{24}, (7.7 \pm 0.4) \times 10^{24}$	58, 59
¹³⁰ Te	Geochemistry	$\sim 0.8 \times 10^{21}, (2.7 \pm 0.1) \times 10^{21}$	58, 59
	MiBETA (bolometer)	$[6.1 \pm 1.4 (\text{stat.})^{+2.9}_{-3.5} (\text{syst.})] \times 10^{20}$	60
	NEMO3 (track calorimeter)	$[7.0 \pm 0.9 \text{ (stat.)} \pm 1.1 \text{ (syst.)}] \times 10^{20}$	61
¹³⁶ Xe	EXO-200 (LXe TPC)	$[2.11 \pm 0.04 \text{ (stat.)} \pm 0.21 \text{ (syst.)}] \times 10^{21}$	38
	KamLAND–Zen	$[2.38 \pm 0.02 \text{ (stat.)} \pm 0.14 \text{ (syst.)}] \times 10^{21}$	39
¹⁵⁰ Nd	Hoover Dam (TPC)	$[6.75^{+0.37}_{-0.42} (\text{stat.}) \pm 0.68 (\text{syst.})] \times 10^{18}$	56
	NEMO3 (track calorimeter)	$[9.11^{+0.25}_{-0.22} \text{ (stat.)} \pm 0.63 \text{ (syst.)}] \times 10^{18}$	62
²³⁸ U	Radiochemistry	$(2.0 \pm 0.6) \times 10^{21}$	22
120		10.0	

Rizalina Mingazheva — Aug 23rd, 2016

The Gerda experiment

-3/1

_ 2.C

BackUp: Other mechanism of the DBD

= 990

Rizalina Mingazheva — Aug 23rd, 2016 THE GERDA EXPERIMENT 4/11

BackUp: 3+1 scenario and $0\nu\beta\beta$ decay

Rizalina Mingazheva — Aug 23rd, 2016

The Gerda experiment

BackUp: From $0\nu\beta\beta$ to neutrino mass

Rizalina Mingazheva — Aug 23rd, 2016 The Gerda Experiment 6/1

= 990

BackUp: NME

 $M^{0\nu} = \langle f || O^K || i \rangle$ O^K operator, which creates two protons and annihilate two neutrons. Depends on the distance between nucleons, and on their quantum numbers

BackUp: LAr background suppression.

- ⁴⁰K/⁴²K Compton continuum fully suppressed
- (70.4±0.3)% survival fraction (0.6-1.3 MeV)
- LAr veto generates 2.3% dead time
- $T_{1/2}^{2\nu} = 1.9 \cdot 10^{21}$ yr taken from Phase I [EPJC 75 (2015) 416]

Rizalina Mingazheva — Aug 23rd, 2016 The Gerda experiment

三日 のへの

BackUp: LAr background suppression.

Rizalina Mingazheva — AUG 23rd, 2016 THE GERDA EXPERIMENT 9/11

BackUp: muon flux

-

BackUp: From mass eigenstates to effective majorana neutrino mass

$$|m_{\beta\beta}| = \left|\sum_{i=1}^{3} U_{ei}^2 m_i\right| \quad ,$$

$$\begin{aligned} c_{jk}(s_{jk}) &= \cos\theta_{jk}(\sin\theta_{jk}).\\ |m_{\beta\beta}| &= \left|c_{12}^2c_{13}^2m_1 + s_{12}^2c_{13}^2m_2e^{i\alpha} + s_{13}^2m_3e^{i\beta}\right| = \\ &= \left|\left(c_{12}^2c_{13}^2m_1 + s_{12}^2c_{13}^2m_2\cos\alpha + s_{13}^2m_3\cos\beta\right) + \\ &+ i\left(s_{12}^2c_{13}^2m_2\sin\alpha + s_{13}^2m_3\sin\beta\right)\right| \quad, \end{aligned}$$

$$|m_{\beta\beta}| = \sqrt{\left(c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 \cos\alpha + s_{13}^2 m_3 \cos\beta\right)^2 + \left(s_{12}^2 c_{13}^2 m_2 \sin\alpha + s_{13}^2 m_3 \sin\beta\right)^2}$$

- θ_{12} and θ_{13} ,
- m_1, m_2 and $m_3,$
- the two Majorana phases α and β ($\Box \mapsto \langle \overline{\sigma} \rangle \land \overline{z} \mapsto \langle \overline{z} \rangle$) Rizalina Mingazheva — Aug 23rd, 2016 THE GERDA EXPERIMENT 11/11