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The DArk Matter Particle Explorer - DAMPE

DAMPE is a high energy astroparticle satellite launched on December 17
2015 into a sun-synchronous orbit at the altitude of 500 km.

Key scientific objectives:

Dark Matter search

Indirect Dark Matter
search.

DM + DM →
γ + X
where X =
(γ,Z0,H) or
other new
neutral particle;

DM decaying in
charged
particles.

Cosmic and γ ray physics

Cosmic ray physics. DAMPE can provide
measurements of various nuclei fluxes to better
understand the origin and the acceleration of cosmic
rays.

γ ray physics. DAMPE can reveal the engimatic
nature of high energy γ-ray phenomena, especially
violent GeV-TeV transients;
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The Detector

DAMPE is composed by:

A Plastic Scintillator
strip Detector (PSD);

A Silicon-Tungsten
TracKer (STK);

A Bismuth
Germanate Oxide
Calorimeter (BGO);

A boron-doped
plastic scintillator
serving as a NeUtron
Detector (NUD);
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Overview Layers Strips Copy Num SD and Hits

Type-A

Type-B

Strips Constructed in Geant4(length shortened)

➔ Material: EJ-200,10mm thick

➔ Wrapping material: Tyvek

➔ Dimention(body):

Type-A: 824mm×28mm×10mm

Type-B: 824mm×25mm×10mm

DAMPE can perform the measurement of γ rays and e from 5 GeV to 10
TeV with σE/E ≈ 1.5% @ 100 GeV (TB result), and of charged cosmic
nucleis up to 100 TeV.
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The Silicon-tungsten TracKer converter

STK has been designed to measure charged particle tracks, to convert γ into
e+, e− pairs in order to measure the photon direction and to measure the Z of
cosmic rays.

STK consist of:

7 support planes, 3 with 1mm
thick W inside, forming 6
tracking double layers;

192 ladders, 16 on each
sensitive face (12). Each
ladder is made by 4 SSD
320µm×9.5mm ×9.5mm.

80 cm

X-layer

Y-layer

Tungsten converter

Particle track

z
x y

Figure 2: (Left) picture of the silicon-tungsten tracker-converter before the assembly of the

last tray, of the DAQ electronics and the cooling and supporting structures; (right) schematic

view the tracker: silicon layers are shown in gray, Tungsten converters in black; aluminum

corner structures and supporting trays of carbon fiber and aluminum-honeycomb are shown

in pale gray.

are read by 6 VA140 ASIC chips. Since the analogue readout is used and thanks

to the charge division on the non-readout strips, even if not all the strips are

readout the position resolution is expected to be better than 80 µm for most

incident angles. The full tracker correspond to a total silicon area of 6.6m2,

comparable to the silicon area of the AMS-02 tracker [2]. The tracker has been

successfully build in spring 2015. A picture of the tracker before the assembly

of last tray, the front-end electronics and the cooling and supporting structures

is in Fig. 2. In the picture the sixteen ladders forming one sensitive layer of the

tracker are clearly visible.

The tracker-converter concept, in which tungsten foils are inserted between

silicon tacking layers, has been employed in AGILE [3] and Fermi [4] and proved

to be an excellent technique to detect high-energy photons with high e�ciency

and precision. An incoming photon converts to an electron-positron pair in the

tungsten converter, which can then be detected by subsequent silicon layers.

The tracker of DAMPE combines the features of the AMS tracker and the

Fermi/AGILE tracker in order to meet requirements of its multitask design.

3

W  
converter

y

z

x

Charged particle ! 

Each ladder is r/o by 6 VA 140 ASIC chips.

1 ladder has
768 strips;

every other
strip is r/o,
total 384
(6×64).

VA Chip
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Equalize the response of the chips
The charge resolution of the tracker is degraded by a number of detector effects
that need to be taken into account and corrected for.

The In-flight VA response equalization of the Tracker is done using the statistics
accumulated over 2 months of operation.
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Figure: Signals of Z= 1 particles
collected in the 6 VAs of a Si
ladder. The fit is done using a
Landau convoluted with a Gaussian
noise function.
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η: a variable used to know the impact position
The cluster amplitude depends on the impact position of the particle on the Si
sensor and on its inclination.

The variable η divides signals generated by a particle impinging on readout strips
and signals generated by a particle impinging on floating strips:

η =
S1

S1 + S2

where S1 and S2 are the two channels with highest signal in the cluster, identified
by their readout channel.

η
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Event sample selection
Selection

Flight data from
27/12/15 to
30/06/2016, not in
SAA;

Not in pole region
(80◦ < |geob| < 90◦

excluded);

Selecting only events
with Erec in BGO> 10
GeV;

Only one track in the
event, at least one PSD
hit, Erec in PSD > 1
MeV;

Selecting only tracks
with at least 5 hits;

Fiducial volume cut: projection of STK track
on BGO [-280 mm, 280 mm];

Geometrical acceptance of STK track on PSD
[-410 mm, 410 mm];

Match STK-PSD within 15 mm;
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Charge sample selection

PSDx,ycharge =
√

Emax×cos(θazimuth)
EMIP
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+ σPSDx(y)
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Charge measurement in STK

The parameter to
identify the Z in STK is
the truncated mean
defined as:

ST =

√∑n
1 Si − Smax

n− 1

where n is the number
of clusters entering the
truncated mean
calculation and Si the
signal of the cluster.

VAs showed to have a saturation and therefore a change of gain
after O ⇒ different calibration after O has to be implemented.
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Dependence of signals from impact angle and η for Z = 1

η
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Dependence of signals from impact angle and η for Z = 2
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Dependence of signals from impact angle and η
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When the IP is close to the floating strip
the charge is shared with the 2 neighbour
strip that collect about 65% of the orig-
inal released charge. If the particle hits
the readout strip almost all the charge is
collected.
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In first approximation the correction fac-
tors result similar for Z = 1 and 2. As-
suming that this is true also for higher
Z, the He correction factors are applied
up to O.
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Comparison
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Conclusions

1 The equalization of all 1152 VA chips of STK ladders was performed;

2 A procedure to correct signals of cosmic rays as a function of the
impact point and angle of the incoming particle was studied;

3 As a first approximation, calibration parameters computed for He
were applied to Z > 2 until O;

4 Thanks to the calibration procedure the identification of ions for
Z > 4 improves; this aspect is very important in CR physics (ex.
B/C ratio etc.);

5 The correction factors for also the other ions are under study in
order to improve the charge resolution thanks to the increase of the
statistics (here 6 months of flight data with a tight cut selection are
shown).

6 More calibration methods are under study to improve the charge
identification for ions heavier than Oxygen.
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B/C ratio etc.);

5 The correction factors for also the other ions are under study in
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DAMPE more in detail

The PSD has a double layer
configuration and 82 detector
modules totally; each module
has a long plastic scintillator
bar of 884 mm with a 28 mm
× 10 mm cross-section;

The BGO Calorimeter is
composed of 308 BGO
Crystal bars 2.5 cm × 2.5 cm
× 60 cm each;

BGO Depth: 32 X0, 1.6 λ;

NUD 30 cm × 30 cm × 1.0
cm block of Eljen
Technologies EJ-254
boron-loaded plastic
scintillator.

High energy hadronic calorimetry 

DAMPE meeting - Oct. 2015 I. De Mitri  (Lecce) 7 

Experiment Technology Depth Geometric 
factor  
(m2 sr) 

E resolution 
above 1 TeV 

Dyn. Range 

CREAM 
ISS-CREAM 

(TRD) + W-SciFi 20 X0 – 0.7 Λ 0.46 45 % 106 

CALET W-SciFi + 
PbWO bars 

30 X0 – 1.4 Λ 0.12 40 % 0.5-107 mip 

DAMPE BGO bars 32 X0 – 1.6 Λ 0.29-0.36 See hereafter  See hereafter 

• DAMPE Geometrical acceptance  

      with BGO alone: 0.36 m2sr 
– BGO+STK+PSD: 0.29 m2sr  
– First 10 layers of BGO (22 X0) 

+STK+PSD: 0.36 m2sr 

DAMPE geometrical acceptance: 0.29 m2sr.
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Gain of the VA
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Energy distribution in PSD
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Dependence of signals from impact angle and η for Z = 1
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Dependence of signals from impact angle and η for Z= 1

Each track has two
projections: one on the xz
plane, one on the yz plane
and two angles between the
z coordinate: θx and θy.CHAPTER 4. ANGULAR RESOLUTION

Figure 4.1: Design of a generic vector in space. ✓x and ✓y are the angles between the projections
of the vector on respectively the xz plane and yz plane and the the z axis.

4.1.1 Center Of Gravity method (COG)

The Center Of Gravity procedure consists in calculating the center of gravity in each layer
of the shower using the energy weighted centers of the cells belonging to the shower:

xCOG
l =

P
i xiEiP
i Ei

(4.2)

where xi is the position of the i-th cell belonging to the shower, Ei its deposited energy
in the i-th cell and xCOG

l is the center of gravity of the shower in layer l.

4.1.2 Cell Ratio (CR) method

For each layer, this method uses the ratio between the energy deposited on the left of
the most energetic cell (EL) and the one deposited on the right (ER). The logarithm of
this ratio depends linearly on the impact position inside the most energetic cell (see Fig.
4.2). This means that when log

⇣
EL
ER

⌘
is zero, the particle impinged on the center of the

cell.

4.1.3 Lateral Fit method

The energy distribution in each layer is parameterized, for each energy and for each angle
(from Monte Carlo) with the shape:

34

Once VA equalized all the 192
ladders, we summed all them
together.
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We can clearly see a different signal
amplitude as a function of η and θx,y.
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ST after application of η correction factor

Figure: Remind: for H it was used a different set of η equalization parameters.
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Number of nuclei collected with thight selection

PSD STK (no shower no fragmentation)

NH 417361 407749
NHe 17675 17572
NLi 2890 2785
NBe 3804 3644
NB 14109 11209
NC 47046 22343
NN 2908 716
NO 22243 1050

Table: The number quoted are very rough, estimated from an integral, not
from a fit.
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