

High performance prototype SiPM camera

for the single mirror small-sized telescope (SST-1M) for the Cherenkov Telescope Array (CTA) project

Matthieu Heller (DPNC, Université de Genève) on behalf of the SST-1M sub-consortium and the CTA consortium

SPS meeting, Lugano, 23-25 August 2016

- A user facility / proposal-driven observatory
 - With two sites with a total of >100 telescopes
- Project with 32 nations
- More than 200 institutions
- More than 1300 members

cherenkov telescope array

The single mirror small-sized telescope

The telescope concept

The camera concept

- Separation of Analog PDP and Digital Readout
 - Analogue signals over CAT6/RJ45
 - DC coupling for NSB monitoring
- IP65: Window and chassis sealed
- Water cooled
- Compact, robust, lightweight and self-contained

Digital readout - DigiCam

- Sampling rate 250 MHz
- Readout rate: 32 kHz @ 80 ns readout window, no dead-time
- Fully digital trigger and readout (High-speed/High-throughput)
- Serial architecture based on multi-Gigabit links (trigger and ADC readout)
- Trigger path with reconfigurable algorithms and signal preprocessing

Photo Detection Plane - Overview

8E00\AE0

- 1296 pixels, 108 modules (12 pixels each)
- Power consumption ~ 500 W
- Total weight 35 kg
- Borofloat entrance window 3.3 mm coated with AR filter (Cut-off at 540 nm)
- Aluminum backplate (6 mm) as backbone and cold plate for Cooling
- Sensor bias automatically adjusted according to temperature

Hollow light guides

Sensors

PreAmp board

Thermal gap filler

Slow control board

Section of the PDP

Borofloat window

Photo Detection Plane - The Pixels

The sensors

Channels:	4
Area:	23.8 mm ² /ch
Cell size:	50 μm x 50 μm
Fill factor:	68 %
N. pixels:	9210 pixels/ch
Capacitance:	840 pF/ch
DC rate:	l MHz/ch

Point Spread Function

- ➡ Angular pixel size (0.25°)
- ➡ Top Physical size = 23.2 mm
- f/D & Camera Diameter
- ➡ Cut-off Angle (24°)
- ➡ Cone Height = 36.7 mm

M. Heller - SST-1M project for CTA

Performance - Module testing and calibration

- Systematic characterization of all modules
- Measurement of critical parameters for calibration
- All data stored in reports and later in data base
- Mean optical cross talk 7.7 %
- Mean dark count rate 2.8 MHz

Gain

detected light intensity [pe]

- The charge resolution is the key parameter to assess quality of image reconstruction
- Measurement performed injecting both pulsed and continuous light
- Below CTA goals for dark night and below requirements for half moon conditions (660 MHz/pixel)

cherenkov telescope array

The commissioning phase

Assembly - Cooling system

Assembly - Photo Detection Plane

1 day for cabling

Commissioning - Web GUI

Monitor and control slow control parameters (T, HV, ...)

cta	S_SST1M_01 ▼	Overv	iew Sa	fety Drive	SkyCCD LidCCD	Digicam	Detectors	Events A	Actuators	cta_matthieu (cta_operator) -
	General: S	et HV	Set GHV	Set Period		S	elect: Separ	rate Boards 🔻	Data: T	• •
	Board Mod	lule GHV	Period	Actions						
	1:10 28	0	0.5	Set GHV	Set HV Set Period					
	Pixel	HV	DAC	т	Actions					
	1:10:0	-	-	20.6	Set HV					
	1:10:1	-	-	20.433	Set HV					
	1:10:2	-	-	12.231	Set HV					
	1:10:3	-	-	20.935	Set HV					
	1:10:4	-	-	20.433	Set HV					
	1:10:5	-	-	19.763	Set HV				••••	
	1:10:6	-	-	20.098	Set HV		12.231		18.341	24.451

- Using the thermistor embedded in the sensor package, the temperature map of the camera is produced
- The warmer region is composed of modules using different sensors and different electronics which is more power consuming

Temperature map

- Using the thermistor embedded in the sensor package, the temperature map of the camera is produced
- The warmer region is composed of modules using different sensors and different electronics which is more power consuming

Sectors monitored one by one for these tests:

- Chiller turned off to force temperature variation
- The bias voltage measured follows the temperature variation as expected

0.1

1.0

energy [TeV]

107

 10^{6}

 10^{5}

104

 10^{3}

 10^{2}

10¹

 10^{0} . 01

effective area $[m^2]$

Simulation

UNIVERSITÉ DE GENÈVE

> Lot of effort to have a simulation (CARE) which better reproduces the real camera architecture:

- Validated against standard simulation tools
- ➡ Now working on trigger optimization & readout scheme:
 - varying number of patches
 - trigger threshold
 - pattern geometry

Validation of CARE against sim telarray

Trigger efficiency with custom topology

1.00.8 trigger efficiency 0.6 reliminarv $r \le 250 \,\mathrm{m}$ 0.4 $- r \le 300 \text{ m}$ $r \le 350 \text{ m}$ $r \le 400 \text{ m}$ 0.2 - r < 500 m- - r < 600 m0.0 0.1 100 1.010

sim telarray sim telarray fit

100

1000

Summary

- Commissioning of the camera is ongoing
- Full readout chain to be tested during the two coming weeks
- Camera ready in October
- Telescope prototype should be completed by November followed by a long and intense operation phase
- Next phase will be the pre-production (2 additional telescopes)
 - Due to the targeted production scale, the detector R&D phase has followed an industrial production flow with solid work on specification documents (design, tests,...) prior to implementation

Back-up slides

	2015					2016				2017				2018				2019				2020			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Σ		CD	DR		Proto	otype r	ready	producti	Test Prototype on site roduction (2 Telescopes)																
SST-1								:	3 Teles	copes r	ready o	on site	oducti	Opera	tion on	site	> •	roductio	on of 17	7 Telesco	pes End c	of Produ	uction		

The Cherenkov Telescope Array - Layout

yout Cta

The Cherenkov Telescope Array - Performance

31

- A factor of 5-10 improvement in sensitivity in the domain of about 100 GeV to some 10 TeV
- Extension of the accessible energy range from well below 100 GeV to above 100 TeV.

M. Heller, DPNC UniGE - SST-1M, CTA

Latest activities - DigiCam testing

- All boards produced, tested and calibrated
- Final developments of the FPGA firmware (FADC and trigger boards) and hardware cross check
- Integration and connection to PDP end of August

DE GENÈVE

From Prototype to Series production

- Already at the prototype phase, solutions to allow for industrial scale production, testing, and calibrations have been developed:
 - Every step of the assembly phase is documented in order to be repeated
 - All fabrication processes can be performed at industrial scale (e.g. injection molding for light guides)
 - Test, calibration of front-end boards and digital boards done at the manufacturer site
 - Full camera calibration strategy using dedicated setup (e.g. camera test setup)

Camera test setup (1AC+1DC led / pixel)

assembly

