B_s⁰ lifetime measurement using semileptonic decays at the LHCb experiment

Angelo Di Canto^a, Mirco Dorigo^b, <u>Brice Maurin^b</u>, Diego Tonelli^a ^aCERN, ^bEPFL

SPS Meeting 2016 Lugano 26.08.2016

Motivation

- Measurement of b-hadron lifetimes provide stringent test and tuning of effective models of QCD at low-energy transfer (e.g. HQET).
- Effectiveness of such QCD models can limit the prediction power in many indirect searches for physics beyond the SM.
- More accurate lifetime measurements help to reduce QCD-related uncertainties, which sharpen our probes into new physics.
- Thanks to large statistics, semileptonic decays offer the highest potential for the ultimate lifetime precisions.

Goal: effective lifetime

• Goal: Probe the difference between two lifetimes

$$\Delta = \Gamma(B_s^{\ 0}) - \Gamma(B^0)$$

by using the decays $B_s^0 \to D_s$ - ($\to K+K-\pi$ -) $\mu+\nu$ and $B^0 \to D$ -($\to K+K-\pi$ -) $\mu+\nu$ as a reference.

- For neutral B mesons, we distinguish two kinds of eigenstates:
 - Flavour eigenstates: B and B
 - Mass and lifetime eigenstates: B_H and B_L
- These are flavour-specific decays: $B \rightarrow f$, $B \rightarrow f$
 - On average, we expect equal fraction of B_H and B_L at production.
 - For flavour-specific decays, it is common in this case to fit the decay time distribution with a single exponential
- Effective B_s lifetime, defined as: $\frac{1}{\Gamma_{FS}^{s}} = \frac{1}{\Gamma_{s}} \left[\frac{\left(1 + \left(\frac{\Delta\Gamma_{s}}{2\Gamma_{s}}\right)^{2}\right)}{\left(1 \left(\frac{\Delta\Gamma_{s}}{2\Gamma_{s}}\right)^{2}\right)} \right], \text{ where } \Gamma_{s} = (\Gamma_{L} + \Gamma_{H})/2, \ \Delta\Gamma = \Gamma_{L} \Gamma_{H}$

Status and method

• WA value: 1.511 ± 0.014 ps

Method: Fit the ratio of the decay time distributions to probe $\Delta = \Gamma(B_s^0) - \Gamma(B^0)$.

- With B^0 lifetime as input (well-known), obtain the B_s^0 lifetime and the ratio between B_s^0 and B^0 lifetimes.
- Use of same final states and similar kinematic properties allows for a significant simplification in dealing with systematic uncertainties (mainly for the decay-time acceptances).
- Potential for competitive result if manage to control the systematic uncertainty.

Today: null-test

Perform the full analysis using

"signal"
$$B^0 \rightarrow D$$
- $(\rightarrow K+\pi-\pi-)\mu+\nu$ "reference" $B^0 \rightarrow D$ - $(\rightarrow K+K-\pi-)\mu+\nu$

and measure

$$\Delta = \Gamma(\mathbf{B}^0) - \Gamma(\mathbf{B}^0) = 0$$

to validate the method with same precision of the target measurement (limited by the reference statistics).

Will sketch the status of the B_s⁰ signal in each step of the analysis.

Determination of the sample composition

Data samples

Ds-peak

.96 1.98 2 2.02

D mass [GeV/c²]

SS data:

$$D_{(s)}^{+}+\mu^{+}$$
, $D_{(s)}^{+}+\mu^{+}$ pairs

Data

SS data

D- peak

 $KK\pi$

35−

Candidates / (0.001 GeV/c²)

Corrected B mass After selection

$$egin{align} M_{cor}(B^0) &= \sqrt{M_{vis}^2 + p_\perp^2} + p_\perp \ p_\perp &= |\mathbf{p_{vis}} - (\mathbf{p_{vis}} \cdot \mathbf{\hat{f}})\mathbf{\hat{f}}| \ \end{pmatrix}$$

Corrected B mass fit: purpose

Fit the corrected B mass w/o considering decay time information to:

- Determine the background decays surviving the selection.
- Determine the signal composition

$$-B_{(s)}^{0} \to D_{(s)}^{-} \mu \nu$$

$$- B_{(s)}^{0} \rightarrow D_{(s)}^{*} - \mu \nu$$

$$- B_{(s)}^{0} \rightarrow D_{(s)} - \mu \nu X$$

$$- B_{(s)}^{0} \rightarrow D_{(s)}^{-} \tau \nu X$$

– ...

Well-known for B⁰, but limited knowledge for B_s⁰.

Matching composition of the simulation with data is crucial to compute:

- the correction for missing momenta
- the decay time acceptances.

Mass fit results: B⁰ case

3/σ	4
7	2 -
	-4

	Fit fraction [%]	Prediction [%]
$B^0 \rightarrow D-\mu\nu$	49.0 ± 0.5	49.8 ± 2.7
$B^0 \rightarrow D^*-\mu\nu$	31.7 ± 0.9	32.7 ± 0.7
$B^0 / B+ \rightarrow D-\mu\nu X$	14.8 ± 1.1	14.0 ± 1.6
$B^0 \rightarrow D$ - $\tau \nu X$	2.1 ± 0.7	1.2 ± 0.3
Combinatorial	2.4 ± 0.1	-

$KK\pi$: 150k candidates

	Fit fraction [%]	Prediction [%]
$B^0 \rightarrow D-\mu\nu$	45.2 ± 0.6	45.7 ± 2.5
$B^0 \rightarrow D^*$ - $\mu\nu$	30.8 ± 0.9	30.9 ± 0.7
$B^0 / B+ \rightarrow D-\mu\nu X$	13.6 ± 0.5	12.4 ± 1.5
Combinatorial	10.5 ± 0.3	-

 Good agreement of fit results compared to expectations.

Mass fit results: B_s⁰ case

	Fit fraction [%]
$B_s^0 \rightarrow D_s - \mu \nu$	29.5 ± 0.7
$B_s^0 \rightarrow D_s^* - \mu \nu$	55.2 ± 1.2
$B_{(s)}^{\ 0} \to D_{(s)}(**)(Ds)X$	4.9 ± 0.9
$B_{(s)}^{0} \rightarrow D_s^{-}(K\mu\nu)/(\tau\nu)$	3.6 ± 0.3
Combinatorial	6.8 ± 0.2

- No measurement available to date on the BR of the $B_s^{\ 0}$ components
 - Predictions not easily made, from B⁰ measurement and flavour symmetries.

530k candidates

Measuring the yields in decay time bins

Missing momentum correction

K-factor: standard method to correct for the missing momentum in partially reconstructed decays.

Correction factor computed using **simulation only** (signal components only).

- Compute $k = p_{rec}(D\mu) / p_{true}(B)$.
- Fit the k-factor k(m) as a function of the visible B mass, $m(D\mu)$.
- Correct the decay time event by event:

$$t_{corr} = t_{rec} \times k(m)$$

Examples of mass fits for the two B⁰ samples

Κππ

 $KK\pi$

Fit of the ratio of yields

Description of the fit

• Fit ratios of signal yields in bins of t_{corr} by minimizing

$$\chi^{2} = \sum_{i}^{N_{\text{bins}}} \frac{(N_{i} - R_{i}D_{i})^{2}}{\sigma_{N_{i}}^{2} + R_{i}^{2}\sigma_{D_{i}}^{2}}$$

where N_i (D_i) is the yield of the numerator (denominator) in the bin i and R_i is the fitted time-dependent ratio containing the lifetimes and several experimental effects:

- The acceptances ratio, assumed constant in a decay-time bin
- Momentum resolution
- Flight-distance resolution ~70 fs (negligible)

Denominator: fix Γ to PDG value of $\Gamma(B^0)$

Numerator: fit $\Gamma = \Gamma(B^0) + \Delta$

Acceptances ratio: B_s⁰/B⁰

- Selection favours decays with close B and D vertexes (small D decay time).
- D- and D_s have a different lifetime => different acceptances.
- Equalize acceptances by reweighing for the difference of D- and D_s- lifetimes.

Acceptances ratio: $B^0(K\pi\pi)/B^0(KK\pi)$

- The acceptances ratio of the two B^0 acceptances varies by up to 20%, because of tighter requirements in the $K\pi\pi$ selection, leading to different momentum distributions.
- Plug the histogram in the fit (and propagate errors).
- A successful null-test proves a reliable MC description.

Ratio LHCb preliminary 15 Data — Fit X²/dof=26.5/16, Prob 8.9% decay time [ps]

Null-test results

$$\Delta = (-5.7 \pm 5.9) \times 10^{-3} \text{ ps}^{-1}$$

which corresponds to

-Fitted
$$\tau(B^0) = 1.533 \pm 0.014 \text{ ps}$$

$$- PDG \tau(B^0) = 1.520 \pm 0.004 ps$$

Successful test despite the large 20% variation of the acceptances ratio, and a residual structure at low decay time

Conclusions and prospects

- Proposed and implemented a novel method for a measurement of the flavour-specific B_s⁰ lifetime in semileptonic decays competitive with world best determinations.
- Null-test results are very encouraging and prove the reliability of the method.
- Now moving to complete the analysis of the B_s⁰ decays.
 - Expected statistical uncertainty of 0.014 ps.
 - Expected systematic uncertainty ≤ 0.010 ps.
 - To be compared with current world-leading results
 - $1.479 \pm 0.010 \pm 0.021$ ps [PRL 114 (2015) 062001]
 - $1.535 \pm 0.015 \pm 0.014$ ps [PRL 113 (2014) 172001]
- Statistically limited: gives room for improvement in LHC Run II and beyond.
- Expect to converge by this fall.

BACKUP

Challenges of the measurement

- Partial reconstruction of an inclusive final state
 - Comprising the $B_s^0 \to D_s$ μ + ν signal, various signal-like decays ($B_s^0 \to D_s^*$ μ + ν , etc.), and other backgrounds.
- No narrow B-mass discriminator to disentangle the various contributions
 - Need an approximation of the invariant B mass.
- Biased B decay times
 - Missing the momenta of unreconstructed decay products.
 - Correct with simulations, after ensuring that it reproduces the signal composition.
- Ensure same acceptances for B_s⁰ and B⁰

A CONTRACTOR OF THE PARTY OF TH

- Understand residual differences between the two samples (with simulations).
- Cross-check with control data the full method

Event selection and decay time determination

Selection

- Select only TOS events of L0Muon, Hlt1 (TrackAllL0, TrackMuon, SingleMuonHighPT) and the «Mu» topological triggers at Hlt2 (Topo{2,3,4}MuNBody).
- Stripping v20r{0,1} p3: b2DsPhiPiMuXB2DMuNuX for $B_{(s)}^{0} \rightarrow D_{(s)}^{-} (\rightarrow K+K-\pi-)\mu+\nu$ p0: b2DpMuXB2DMuNuX for $B^{0} \rightarrow D-(\rightarrow K+\pi-\pi-)\mu+\nu$.
- Cut-based selection optimized to suppress background from misidentification for the $KK\pi$ sample.
- $K\pi\pi$ selection similar to $KK\pi$ but features tighter requirements, mainly at stripping level. Main source of differences between the $KK\pi$ and $K\pi\pi$ time acceptances.

Experimental status

- WA value: 1.511 ± 0.014 ps
 - D0 with $B_s^{~0}$ → D_s µv [PRL 114 (2015) 062001] $1.479 \pm 0.010 \pm 0.021$ ps. Major offender is combinatorial background.
 - LHCb with $B_s^0 \rightarrow D_s \pi$ [PRL 113 (2014) 172001] 1.535 ± 0.015 ± 0.014 ps. Systematics dominated by acceptance description.
- Potential for competitive result if manage to control the systematic uncertainty.

Stripping cuts

Quantity	$K^+K^-\pi^-$ requirement	$K^+\pi^-\pi^-$ requirement
•	(b2DsPhiPiMuXB2DMuNuX)	(b2DpMuXB2DMuNuX)
ProbNNghost(μ , π , K)	< 0.5	< 0.5
Minimum IP $\chi^2(\mu,\pi,K)$	> 4.0	> 9.0
$p_T(\mu)$	> 600 MeV/c	> 800 MeV/c
$p(\mu)$	_	> 3.0 GeV/c
$PIDmu(\mu)$	> 0.0	> 0.0
Track χ^2/ndf	-	< 4.0
$p_T(K), p_T(\pi)$	> 150 MeV/c	> 300 MeV/c
$p(K), p(\pi)$	> 1.5 GeV/c	> 2.0 GeV/c
PIDK(K)	> 0.0	> 4.0
$PIDK(\pi)$	< 20.0	< 10.0
D daughters' $\sum p_T$	_	> 1.8 GeV/c
D vertex χ^2/ndf	< 8.0	< 6.0
$D \chi^2/\text{ndf}$ separation from PV	> 20	> 100
D DIRA	> 0.99	> 0.99
$m(D_{(s)}^-)$	$\in [1789.620, 2048.490] \text{ MeV}/c^2$	$\in [1789.620, 1949.620] \text{ MeV}/c^2$
$m(K^+K^-)$	$\in [979.455, 1059.455] \text{ MeV}/c^2$	_
B vertex χ^2/ndf	< 20.0	< 6.0
B DIRA	> 0.99	> 0.999
$m(D_{(s)}\mu)$	$\in [0.0, 1000.0] \text{ GeV}/c^2$	$\in [2.5, 6.0] \text{ GeV}/c^2$
$v_z(D) - v_z(B)$	> -0.3 mm	> 0.0 mm

Selection cuts

Quantity	$K^+K^-\pi^-$ requirement	$K^+\pi^-\pi^-$ requirement
ProbNNk(K)	> 0.2	> 0.2
$\operatorname{ProbNNpi}(\pi)$	> 0.2	> 0.5
$\operatorname{ProbNNmu}(\mu)$	> 0.2	> 0.2
p(K)	$> 2 \mathrm{GeV}/c$	$> 3 \mathrm{GeV}/c$
$p(\pi)$	$> 2 \mathrm{GeV}/c$	$> 5 \mathrm{GeV}$
$p_T(K), p_T(\pi)$	$> 300 \mathrm{MeV}/c$	$> 500 \mathrm{MeV}/c$
$D_{(s)}^-$ vertex χ^2/ndf	< 6.0	< 6.0
$v_z(D) - v_z(B)$	> 0.1 mm	> 0.1 mm
$m(K^+K^-)$	$\in [1.008, 1.032] \text{ GeV}/c^2$	_
$m(D_{(s)}^-\mu^+)$	$> 3.1 {\rm GeV}/c^2$	$> 3.1 {\rm GeV}/c^2$
	$\not\in [5.200, 5.400] \text{ GeV}/c^2$	$\not\in [5.200, 5.400] \text{ GeV}/c^2$
$m(\mu^+\mu^-)$	$\not\in [3.040, 3.160] \text{ GeV}/c^2$	$\not\in [3.040, 3.160] \text{ GeV}/c^2$
	$\notin [3.635, 3.735] \text{ GeV}/c^2$	$\not\in [3.635, 3.735] \text{ GeV}/c^2$
$m(Kp\pi)$	$\not\in [2.260, 2.310] \text{ GeV}/c^2$	$\not\in [2.260, 2.310] \text{ GeV}/c^2$

Missing momentum resolution

- K-factor correction leads to a degradation of the decay-time resolution.
- Taken into account with k' factor.

Description of the fit

Fit ratios of signal yields in bins of t_{corr} by minimizing $\chi^2 = \sum_{i=1}^{N_{bins}} \frac{(N_i - R_i D_i)^2}{\sigma_{N_i}^2 + R_i^2 \sigma_{D_i}^2}$

$$\chi^{2} = \sum_{i}^{N_{\text{bins}}} \frac{(N_{i} - R_{i}D_{i})^{2}}{\sigma_{N_{i}}^{2} + R_{i}^{2}\sigma_{D_{i}}^{2}}$$

where $N_i(D_i)$ is the yield of the numerator (denominator) in the bin i and

$$R_{i} = \mathcal{N} A_{i} \frac{\int_{\Delta t_{i}} \operatorname{pdf}_{\operatorname{num}}(t) dt}{\int_{\Delta t_{i}} \operatorname{pdf}_{\operatorname{den}}(t) dt}$$

Acceptance ratio, assumed constant in the decay-time bin

Denominator: fix Γ_j to PDG value of $\Gamma(B^0)$ Numerator: fit $\Gamma_j = \Gamma(B^0) + \Delta$

Fitting the B⁰ sample

