

# **HEP Computing in Switzerland**











Christoph Grab (ETH) Head of CHIPP Computing Group

CHIPP, August 23, 2016



# Status of WLCG Tier-2 and Tier-3 computing resources in Switzerland

Only few updates with respect to ECFA status report on 1.4.2016

**ETH**zürich Christoph Grab, ETH

# **Overview Swiss LHC Computing Resources**

### • Switzerland operates Tier-2 Regional Centre at CSCS and AEC

- Maintain our own dedicated compute-cluster integrated into "WLCG".
- Switzerland is committed as full member to contribute resources; signed MoU
- Tier-2 operated by CSCS, serves all 3 experiments: ATLAS,CMS, LHCb
- Tier-2 operated at AEC-UNIBE serves ATLAS only
  - Collaboration agreement for operation of T2 between CHIPP and CSCS/ETHZ (2007-2018 with additional ETHZ funding secured)
  - Available resources provided to WLCG and exploited centrally by experiments



CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre



Swiss Tier-2 Phoenix cluster at Lugano

• Complemented by local Tier-3 clusters at PSI, UBe+UGe, UZH+EFL



| <b>EGI</b> (European Grid Infrastructure); NGI <b>WLCG</b> (Wordwide LHC compute Grid) |                                                                                    |                 |                                                      |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|------------------------------------------------------|--|--|--|--|
| CSCS T2 -ATLAS, CMS,LHCb<br>• 6240 cores; 69 kHS06<br>• ~3500 TB disk                  | <b>PSI-ETHZ-UZH T3 (CMS)</b><br>1040 cores; 12.5 kHS06;755 TB                      | z               | C<br>Rec<br>(also t                                  |  |  |  |  |
| CPU / Disk share~ 35:35:29 / 39:39:22<br>• 40 Gb/s to 100 Gb/s backbone                | DPNC-UNIGE T3 (ATLAS)<br>784 cores; 6.0 kHS06; 828 TB<br>Direct 10 Gb/s to CERN IT | etworking       | <b>Coor</b><br>HIPP Con<br>Jular F2F I<br>SwiNG as N |  |  |  |  |
| AEC-UNIBE T2 (ATLAS)<br>• 2300 cores: 20 kHS06                                         | UZH T3 (LHCb)<br>480 cores; 5.2 kHS06; 250 TB                                      | g by S          | dinatic<br>nputing<br>meetin<br>NGI inte             |  |  |  |  |
| (2 clusters);<br>• 500 TB disk ; 10 Gb/s                                               | EPFL T3 (LHCb)<br>410 cores; 6.8 kHS06; 80 TB                                      | WITCH           | on<br>g Board<br>gs of C<br>erface to                |  |  |  |  |
| • Monthly meetings                                                                     | I)                                                                                 | d<br>CB<br>EGI) |                                                      |  |  |  |  |
|                                                                                        |                                                                                    |                 | CG 8/16                                              |  |  |  |  |
| Noto: our of Tior 2 resources [-2]                                                     |                                                                                    |                 |                                                      |  |  |  |  |

Note: sum of Tier-3 resources [~30 kHS06; 1.5 PB] equals ~ 2/3 of Tier-2 resources (except ATLAS)



# **Swiss Tier-2 Resources Evolution**

### **Evolution for** 2007 – 2017



(phase K; met pledges 1.4.2016; now in phase L)



Power Consumption [KW]





### actual CPU+Disk > pledges

8.2016



# Cluster CPU statistics (2015-2016)

### For period 2015-2016



# Availability and reliability of the cluster to experiments (WLCG)

Overall high (>95%).

Pledges (in CPU hours ) are met.

# Resource distribution @CSCS (8/2016)

### Walltime CPU usage 1.2015-1. 2016

### CPU usage 2015-16



### Compare to worldwide T2 usage



### Storage usage on 8.2016

Disk usage Aug.2016



### Resource ratios at CSCS: (8.2016) ATLAS:CMS:LHCb

- CSCS fairshare ratio 40:40:20
- ➤ effective CPU usage: 35:35:29
- CSCS disk ratio: 39:39:22



## **Comments on Resources**

- HW investments at CSCS (replacements and additions) are based on C-RRB recommendations of a "flat budget". Funded by FLARE/SNF Provides typically 15-20% increase of resource "power" per year.
- HW investment at AEC: HW + FTE from Institute/SNSF; power/infrastructure covered by the UniBe
- Personnel for operation :

### ~ 3 FTE for T2

~1 FTE for expt. contact

- >1.5 FTE to support Tier-2 operation at CSCS, covered by SNF/FI ARE
- >1 FTE covered by ETH internal funds for T2 at CSCS
- > + 0.5 for AEC-ATLAS only Tier-2 operation
- > Additional ~0.3 FTE per experiment as user- and experimentspecific software support, covered by institutes
- > Overall management and coordination tasks covered by ETH

### Other resource items T2 and T3

- Recurring power/infrastructure costs at CSCC are carried by ETH; at AEC-UniBe carried by UniBe.
- > Tier-3 hardware costs covered by institutes
- > specific Tier-3 manpower covered by institutes, partly by SNF



# **Swiss Tier-2 Resource Planning**

#### **COMPUTE Resources, in kHS06 units**

|            | 2013        | 2014        | 2015        | 2016          | 2017      | 2018     |
|------------|-------------|-------------|-------------|---------------|-----------|----------|
| Experiment | (delivered) | (delivered) | (delivered) | (in progress) | (planned) | (future) |
|            | Phase G     | Phase H     | Phase J     | Phase K       | Phase L   | Phase M  |
| ATLAS      | 9.2         | 10.4        | 14          | 18            | 22        | 25       |
| CMS        | 9.2         | 10.4        | 14          | 18            | 22        | 25       |
| LHCb       | 4.6         | 5.2         | 7           | 13            | 18        | 22       |
| TOTAL      | 23          | 26          | 35          | 49            | 62        | 72       |
| (kHS06)    |             |             |             |               |           |          |

Table 1: CPU resources, quoted in kHS06 units, as delivered or pledged to be available on April 1 of the year by the Swiss Tier-2 at CSCS as our national contribution (CH\_Tier2) to WLCG[4].

| STORAGE    | STORAGE Resources, in reladyce units |             |             |               |           |          |  |  |  |  |
|------------|--------------------------------------|-------------|-------------|---------------|-----------|----------|--|--|--|--|
| Experiment | 2013                                 | 2014        | 2015        | 2016          | 2017      | 2018     |  |  |  |  |
|            | (delivered)                          | (delivered) | (delivered) | (in progress) | (planned) | (future) |  |  |  |  |
|            | Phase G                              | Phase H     | Phase J     | Phase K       | Phase L   | Phase M  |  |  |  |  |
| ATLAS      | 649                                  | 792/350     | 875/350     | 1200          | 1375      | 1500     |  |  |  |  |
| CMS        | 649                                  | 792         | 875         | 1200          | 1375      | 1500     |  |  |  |  |
| LHCb       | 2                                    | 216         | 550         | 670           | 750       | 1000     |  |  |  |  |
| TOTAL      | 1300                                 | 1800        | 2300        | 3070          | 3500      | 4000     |  |  |  |  |
| (TB)       |                                      |             |             |               |           |          |  |  |  |  |

#### STORAGE Resources, in Terabyte units

Table 2: Effective Grid Storage resources in Terabytes, as delivered or pledged to be available on April 1st of the year by the Swiss Tier-2 at CSCS as our national contribution (CH\_Tier2) to WLCG [4].

#### **SUMMARY of Resources**

| Resource               | 2013<br>(delivered)<br>Phase G | 2014<br>(delivered)<br>Phase H | 2015<br>(delivered)<br>Phase J | 2016<br>(in progress)<br>Phase K | 2017<br>(planned)<br>Phase L | 2018<br>(future)<br>Phase M |
|------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|------------------------------|-----------------------------|
| CPU<br>(kHS06)         | 23                             | 26                             | 35                             | 49                               | 62                           | 72                          |
| Effective<br>disk (TB) | 1300                           | 1800                           | 2300                           | 3070                             | 3500                         | 4000                        |

met pledges 1.4.2016
Phase L: =

phase K:= completed;

Install in 2016; to meet pledges in 1.4.2017.

Note: surpassed our expectations on CPU due to better deal, and faster HW (Haswell CPU, Xeon E5-2680 v3 2.5GHz; vs lvyBridge v2).

**Planning + Pledges:** To be discussed at the next CHIPP computing board on 1.9.

Table 3: Summary of the resources as delivered or pledged for April 1 of the year by our Swiss Tier-2 at CSCS to the international LHC community WLCG.

# **Swiss CHIPP LHC Computing Pledges**

CHIPP Tier-2 pledged vs delivered resources on 8.2016

(source REBUS)

| Installed Capacities        |             |                   |                   |           |             |                |  |  |
|-----------------------------|-------------|-------------------|-------------------|-----------|-------------|----------------|--|--|
| Year: 2016 Month: 8         |             |                   |                   |           |             |                |  |  |
| Infrastructure              | Site Name 🗘 | Physical<br>CPU 🗘 | Logical<br>CPU \$ | HEPSPEC06 | Disk (GB) 🗘 | Tape<br>(GB) ≎ |  |  |
| EGI                         | CSCS-LCG2   | 304               | 6,208             | 69,513    | 3,680,812   | 0              |  |  |
| EGI                         | UNIBE-LHEP  | 179               | 2,281             | 0         | 0           | 0              |  |  |
| Total                       |             | 483               | 8,489             | 69,513    | 3,680,812   | 0              |  |  |
| Showing 1 to 2 of 2 entries |             |                   |                   |           |             |                |  |  |

Note:

We surpassed our expectations on CPU due to better deal (bulk order CSCS) and faster CPU-HW (Haswell CPU vs IvyBridge).

## **Status 8/2016**

| Federation Pledges          |         |             |         |             |        |             |        |             |        |             |
|-----------------------------|---------|-------------|---------|-------------|--------|-------------|--------|-------------|--------|-------------|
| Year: 2016                  |         |             |         |             |        |             |        |             |        |             |
| Pledge Type                 | ALICE 🗘 | % of Req. 🗘 | ATLAS 🗘 | % of Req. 💠 | CMS 🗘  | % of Req. 🗘 | LHCb 🗘 | % of Req. 🗘 | SUM 🗘  | % of Req. 🗘 |
| CPU (HEP-SPEC06)            |         |             | 24,500  | 4%          | 14,500 | 2%          | 10,000 | 12%         | 49,000 | 4%          |
| Disk (Tbytes)               |         |             | 1,380   | 2%          | 1,030  | 3%          | 540    | 19%         | 2,950  | 3%          |
| Showing 1 to 2 of 2 entries |         |             |         |             |        |             |        |             |        |             |

https://wlcg-rebus.cern.ch/apps/topology/federation/259/

→ Pledges are met; sources vary over time (due to replacement steps)



### Swiss Tier-3 resources are undispensible tools and exist in quite different "flavours" for :

- ATLAS: each at UBern and at UGe
- → CMS: common T3 for ETHZ, UZH, PSI at PSI
- LHCb: each at UZH and EPFL.
- Their capacity sum up to ~50% and 70% of CPU and storage of Tier-2 (at CSCS w/out AEC).

Updated details (8/16) of each Tier-3 in backup slides ....



# **Network in Switzerland**



# **Swiss National Network**





# **Efforts towards a Future Model** of improved resource sharing

Continuously growing demand for computing resources requires rethinking of traditional HEP-only High Throughput Computing (HTC) clusters

Approach: Make High Performance Computing (HPC) resources available to the HEP community.

Swiss R&D project : "LHConCray at CSCS"

# **LHConCray at CSCS – present situation**

- CHiPP currently operates its own dedicated Tier-2 hardware cluster at CSCS. This requires:
  - Maintain multiple middleware interfaces (compute, storage, info)
  - All tailored specifically for CHiPP
  - System/Interfaces at CSCS, VO representatives outside

Overall efficiency can potentially be much improved by <u>sharing resources with</u> <u>many other communities</u>





# LHConCray at CSCS – goal of R&D

- Goal is to share resources and efforts with other communities.
- In our specific case this would mean profit from the shared HPC Systems at CSCS (with >6500 nodes and >10 PB of storage) while keeping the interfaces to the Grid World WLCG

### **Project requires:**

- Porting different workflows (VO Job factories and such) into the shared systems
- Render Grid Middleware CRAYenabled
- TEST, TEST, TEST ..





# LHConCray at CSCS – status

- Objective: Run LHC workflows in production on the CSCS Cray in shared mode
- First tests on prototype HW were successful (ATLAS MC production).
- Extensive tests on actual CRAY systems in "real production environment" are now in progress for ATLAS, CMS and LHCb.
- Currently, however CRAY-HW at CSCS is being upgraded ...
- Need to do:
  - Demonstrate technical feasability of running for all 3 experiments
  - Testing, testing ... of ~1 month for stability
  - Determine operation efficiency, costs, study system behaviour...
  - Do cost comparisons of present vs future LHConCRAY, based on data.
  - Then decide on switching systems, stop, or have independent R&D.

### Profits:

- ✓ Broaden availability of resources worldwide far beyond present technologies
- ✓ Leverage from economy of scales procuring and operating hardware
- ✓ Cooperate and involve other communities (HPC)...
- $\checkmark\,$  Other, similar efforts ongoing in ATLAS, CMS, (ALICE)

### **Questions: Long-term strategy >2020? Switch completely ? Funding?**



U.S. CMS

Operations Program

# **Other efforts: HPC and Clouds**

• *From* Liz Sexton-Kennedy of USCMS (june 16):

NSF/DOE "Open" HPC sites

We are not the only one investigating HPCs

| Name                               | Institution | Architecture                                 | Start Date                   |       |  |  |
|------------------------------------|-------------|----------------------------------------------|------------------------------|-------|--|--|
| Mira *                             | ANL         | 786k core IBM PowerPC                        | 2012                         |       |  |  |
| Titan                              | Oak Ridge   | 299k core AMD Opteron                        | 2012                         | 0140  |  |  |
| Stampede                           | TACC        | 100k core Intel Sandy Bridge                 | 2013                         | CIVIS |  |  |
| Comet                              | SDSC        | 47k core Intel Haswell                       | 2015                         |       |  |  |
| Edison * **                        | NERSC       | 133k core Intel Ivy Bridge                   | 2015                         |       |  |  |
| Cori 1 * **                        | NERSC       | 52k core Intel Haswell                       | 2015                         |       |  |  |
| Cori 2                             | NERSC       | 500k core Intel Knights Landing              | 2016                         |       |  |  |
| Theta                              | ANL         | 150k core Intel Knights Landing              | 2016                         |       |  |  |
| Summit                             | Oak Ridge   | ~3400 nodes IBM Power 9                      | 2017                         |       |  |  |
| Aurora                             | ANL         | ~50k nodes Intel XEON Phi Gen 3              | 2018                         |       |  |  |
| Stampede 2                         | TACC        | TBD ("twice the performance of<br>Stampede") | TBA (announced<br>June 2016) |       |  |  |
| NSF DOE * = CMS has an allocation, |             |                                              |                              |       |  |  |

\*\* = have run standard workflows

6

18



# **Other efforts: HPC and Clouds**

• From Torre Wenaus (BNL) of ATLAS (May 16):

### Yoda: Event Service on Supercomputers

- While PanDA was originally developed for the Grid, BigPanDA and ATLAS have extended it to operate also as an HPC internal system
  - Designed for efficient and flexible resource allocation and management of MPI-based parallel workloads within HPC

FRKELEY LA

 Yoda - HPC-internal version of PanDA - leverages the experience acquired in massively scaled data Intensive processing for efficient utilization of a single massively scaled HPC machine





- RZG, Hydra

ATLAS

- ALCF =Argonne leadership computing facilty
- OLCF: Oak Ridge leadership ...





# **CHIPP Computing Board**

### **Coordinates the tier-2 and tier-3 activities**

includes representatives of all institutions and experiments, CSCS, and tier-3 experts





T.Golling, Luis M.Ruiz (UNI Ge) S.Haug, G.Sciacca (UNI Bern)

C.Grab (ETHZ) chair CCB D.Feichtinger (PSI) vice-chair CCB J.Pata (ETHZ), F.Martinelli (PSI)



R.Bernet (UNIZH) A.Bay, M.Tobin (EPFL)



P.Fernandez, M.Gila, M.Ricciardi, M. De Lorenzi (CSCS)

Thank you ...