Proton-Proton Hollowness From Inverse Scattering

Enrique Ruiz Arriola

Departamento de Física Atómica, Molecular y Nuclear, Instituto Carlos I de Física Teórica y Computacional Universidad de Granada, Spain.

QCD and Diffraction - Saturation 1000+
Krakow, 5-7 December 2016

Alhambra-Wawel collaboration: 50+ papers, 800+ citations
Research with Wojcieh Broniowski

Based on [arXiv:1609.05597]
- Low energy nuclear reactions
- High energy NN scattering

Inelastic transition \rightarrow Regge Transition \rightarrow Hollowness transition
Larger, Blacker, Edgier
1000 eV+
Neutron-nucleus scattering

- Partial wave expansion elastic scattering amplitude

\[f(\theta) = pR \sum_{l=0}^{\infty} (2l + 1) P_l(\cos \theta) \frac{S_l - 1}{2ip} \]

- Differential elastic cross section

\[\frac{d\sigma_{el}}{d\Omega} = |f(\theta)|^2 \quad \rightarrow \quad \sigma_{el} = \frac{4\pi}{p^2} \sum_{l=0}^{\infty} (2l + 1)|1 - S_l|^2 \]

- Total Cross section and Optical theorem

\[\sigma_T = \frac{4\pi}{p^2} \sum_{l=0}^{\infty} (2l + 1)(2 - 2\text{Re}S_l) = \frac{4\pi}{p} \text{Im}f(\theta = 0) \]

- Reaction (inelastic) cross section
Black disk $S_l = 0$ for $l \leq pR$ and $S_l = 1$ for $l > pR$

$$\sigma_T = \frac{4\pi}{p^2} \sum_{l=0}^{pR} (2l + 1)(2 - 2\text{Re}S_l) = 2\pi(R + 1/p)^2 = 2\sigma_{el}$$

Using $R = r_0 A^{1/3} = 1.2(208)^{1/3}$fm = 7fm

$$\sigma_T = 2\pi R^2 = 3\text{barn} \quad \sigma_{el} = \pi R^2 = 1.5\text{barn}$$
Optical model and Optical Potential

- Optical model (Energy dependent complex potential)
 \[V(r, E) = \text{Re}V(r, E) + i\text{Im}V(r, E) \]

- Woods-Saxon forms
 \[F(r) = \frac{1}{1 + e^{(r-R)/a}} \quad R = r_0A^{\frac{1}{3}} \quad a = 0.7\text{fm} \]

- Real and imaginary potentials
 \[\text{Re}V(r) \sim F(r) \quad \text{Im}V(r) \sim F'(r) \]
1000 KeV+
Proton-Proton scattering

- First inelastic threshold (1π)

$$s = 4(p^2 + M_N^2) \quad \sqrt{s_{\text{in}}} = 2M_N + m_\pi \rightarrow E_L = 300\text{MeV}$$

- Scattering amplitude

$$M = a + m(\sigma_1 \cdot n)(\sigma_2 \cdot n) + (g - h)(\sigma_1 \cdot m)(\sigma_2 \cdot m)$$
$$+ (g + h)(\sigma_1 \cdot l)(\sigma_2 \cdot l) + c(\sigma_1 + \sigma_2) \cdot n$$

- Five complex a, m, g, h, c depend on energy and angle
- 24 measurable cross-sections and polarization asymmetries
NN scattering below inelastic threshold

- Fit to 8000 np and pp scattering data from 1950-2013 below 350 MeV
- χ^2/DOF = 1.04 \rightarrow NN potential with errors [Navarro, Amaro, E.R.A. 2013]
NN scattering below inelastic threshold

- Fit to 8000 np and pp scattering data from 1950-2013 below 350 MeV
- $\chi^2/\text{DOF} = 1.04 \rightarrow \text{NN potential with errors [Navarro, Amaro, E.R.A. 2013]}$
1000 MeV+
Inelastic resonance transition

- The inelastic transition at $\sqrt{s} = M_N + M_\Delta$

\[NN \rightarrow \Delta N \rightarrow \pi NN \quad NN \rightarrow \Delta\Delta \rightarrow 2\pi NN \quad \ldots \]

- Partial wave analysis stops at 3 GeV

- We need a Complete set of measurements at higher energies !!!
Regge transition

- From Pion Exchange to Pomeron Exchange
- Motivated by Regge theory (spin neglected)

\[A(s, t) \sim \sum_n A_n s^{\alpha_n(t)} \]
\[\alpha_n(t) = \alpha_n(0) + \alpha'_n(0)t \]

- Two terms and a relative phase

\[A(s, t) = i \left(\sqrt{A} e^{Bt/2} + \sqrt{C} e^{Dt/2} + i\phi \right) \]
1000 GeV+
From ISR to TOTEM

\[\frac{d\sigma_{\text{el}}}{d(-t)} [\text{mb GeV}^{-2}] \]

- 23.4 GeV
- 7 TeV (x10^{-3})

E. Ruiz Arriola (U. Granada)
Parametrization of the scattering amplitude

S Parametrization by [Fagundes 2013], based on [Barger-Phillips 1974], motivated by the Regge asymptotics:

\[
\frac{f(s, t)}{p} = \sum_n c_n(s) F_n(t) s^{\alpha_n(t)} = \frac{i\sqrt{A} e^{\frac{Bt}{2}}}{(1 - \frac{t}{t_0})^4} + i\sqrt{C} e^{\frac{Dt}{2} + i\phi}
\]

s-dependent (real) parameters are fitted separately to all known differential pp cross sections for \(\sqrt{s} = 23.4, 30.5, 44.6, 52.8, 62.0, \text{and } 7000 \text{ GeV} \) with \(\chi^2/d.o.f \sim 1.2 - 1.7\)

\[
\frac{d\sigma_{el}}{dt} = \frac{\pi}{p^2} |f(s, t)|^2, \quad \sigma_T = \frac{4\pi}{p} \text{Im} f(s, 0)
\]
Eikonal approximation

\[f(s, t) = \sum_{l=0}^{\infty} (2l + 1) f_l(p) P_l(\cos \theta) \]

\[= \frac{p^2}{\pi} \int d^2 b h(\vec{b}, s) e^{i\vec{q} \cdot \vec{b}} = 2p^2 \int_0^\infty bdb J_0(bq) h(b, s) \]

\[t = -q^2, \quad q = 2p \sin(\theta/2), \quad bp = l + 1/2 + O(s^{-1}), \quad P_l(\cos \theta) \rightarrow J_0(qb), \]

hence the amplitude in the impact-parameter representation becomes

\[h(b, s) = \frac{i}{2p} \left[1 - e^{i\chi(b)} \right] = f_l(p) + O(s^{-1}) \]

The eikonal approximation works well for \(b < 2 \text{ fm} \) and \(\sqrt{s} > 20 \text{ GeV} \)

Procedure: \(f(s, t) \rightarrow h(b, s) \rightarrow \chi(b) \ldots \)
Eikonal approximation 2

The standard formulas for the total, elastic, and total inelastic cross sections read

$$\sigma_T = \frac{4\pi}{p} \text{Im} f(s, 0) = 4p \int d^2b \text{Im} h(b, s) = 2 \int d^2b \left[1 - \text{Re} e^{i\chi(b)} \right]$$

$$\sigma_{el} = \int d\Omega |f(s, t)|^2 = 4p^2 \int d^2b |h(b, s)|^2 = \int d^2b |1 - e^{i\chi(b)}|^2$$

$$\sigma_{in} \equiv \sigma_T - \sigma_{el} = \int d^2b n_{in}(b) = \int d^2b \left[1 - e^{-2\text{Im}\chi(b)} \right]$$

The inelasticity profile

$$n_{in}(b) = 4p\text{Im} h(b, s) - 4p^2|h(b, s)|^2$$

satisfies $n_{in}(b) \leq 1$ (unitarity)
Profiles
Dip in the inelasticity profile

From top to bottom: $\sqrt{s} = 14000, 7000, 200, 23.4$ GeV
Slope of the inelasticity profile

\[\frac{d n_{\text{in}}(b)}{db^2} \mid_{b=0} \text{ [fm}^{-2}] \]

Transition around \(\sqrt{s} = 5 \text{ TeV} \)
Amplitude and eikonal phase

\[2p h(b) = i \left[1 - e^{i\chi(b)} \right] \]
Potentials
The field theory approach

- Multichannel Bethe-Salpeter equation (linear, off-shell)
 \[T = V + VG_0T \]

- The Low equation for the elastic amplitude (non-linear, on-shell)
 \[T_{el} = W + T_{el}G_0T_{el}^\dagger \]

- In partial waves
 \[f_l(s) = w_l(s) + \frac{1}{\pi} \int_{s_0}^{\infty} \frac{f_l(s')p(s')f_l^\dagger(s')}{s' - s - i0^+} , \quad p(s) = \sqrt{s/4 - M_N^2} \]

- Unitarity (right cut)
 \[\text{Im}f_l(s) - p|f_l(s)|^2 = \text{Im}w_l(s) \]

- Causality
 \[w_l(s) = \frac{1}{\pi} \int_{s_0}^{\infty} \frac{\text{Im}w_l(s')}{s' - s - i0^+} ds' \]

- Particle exchange (left cut)
The on-shell optical potential

- Locality
 \[w_l(s) = -\frac{1}{p} \int_0^\infty r^2 dr \left[j_l(pr) \right]^2 W(r, s) \]

- Mandelstam representation (Superposition of Yukawas)
 \[W(r, s) = \int_0^\infty d\mu \rho(\mu, s) \frac{e^{-\mu r}}{r} \]
 [Cornwall, Ruderman, PR (1965)]

- Dispersion relation
 \[\text{Re}W(r, s) = \]

- Inelastic cross section (On shell optical potential)
 \[\sigma_{\text{in}} \equiv \sigma_T - \sigma_{\text{el}} = -\frac{1}{p} \int d^3x \text{Im} W(\vec{x}, s) \]
The equivalent potential: Invariant mass approach

- Invariant mass method (free particles)

\[\mathcal{M}^2 = P^\mu P_\mu = (p_1 + p_2)^{\text{CM}} = 4(p^2 + M_N^2) \]

- Invariant mass method: Interaction

\[\mathcal{M}^2 = P^\mu P_\mu + V^{\text{CM}} = 4(p^2 + M_N^2) + V(\vec{x}) \rightarrow 4(-\nabla^2 + M_N^2) + V(\vec{x}) \]

- Non-relativistic limit \(V(x) = 4U(x) = 4M_N V(\vec{x}) \)

- Equivalent Schrödinger equation

\[\left[-\nabla^2 + U(\vec{x}) \right] \Psi(\vec{x}) = \left(s/4 - M_N^2 \right) \Psi(\vec{x}) \quad s = 4(p^2 + M_N^2) \]

- Optical potential

\[U(\vec{x}) \rightarrow U(\vec{x}, s) = \text{Re}U(\vec{x}, s) + i\text{Im}U(\vec{x}, s) \]
The equivalent potential approach: Flux

- Scattering boundary condition

\[\Psi(\vec{x}) \to e^{i\vec{k} \cdot \vec{x}} + f(\hat{x}) \frac{e^{ik}}{r} \]

- Flux balance

\[\int d\Omega \lim_{r \to \infty} r^2 [\Psi^* \partial_r \Psi - \partial_r \Psi^* \Psi]_{\vec{x} = r \hat{x}} = \int d^3 x \text{Im} U(\vec{x}) |\Psi(\vec{x})|^2 \]

- Inelastic cross section

\[\sigma_T - \sigma_{el} \equiv \sigma_{in} = -\frac{1}{p} \int d^3 x \text{Im} U(\vec{x}, s) |\psi(\vec{x})|^2 \]

- We can identify the On-shell Optical Potential with the “Standard” one

\[\text{Im} W(\vec{x}, s) = \text{Im} U(\vec{x}, s) |\psi(\vec{x})|^2 \]

The OS-OP has no dependence on the wave function!
The equivalent potential: Eikonal approximation

- In the eikonal approximation

\[\psi(\vec{x}) = \exp \left[ipz - \frac{i}{2p} \int_{-\infty}^{z} U(b, z')dz' \right] \]

and thus

\[\frac{1}{p} \text{Im } U(\vec{x}, s) |\psi(\vec{x})|^2 = \partial_z \exp \left[\frac{1}{p} \int_{-\infty}^{z} \text{Im } U(b, z')dz' \right] \]

- The total

\[-\frac{1}{p} \int d^3x \text{Im } W(\vec{x}, s) \xrightarrow{\text{eikonal}} \int d^2b \left(1 - e^{-\text{Im } \chi(b)} \right) \]

- Transverse probability form the On-shell Optical Potential (no eikonal approximation !)

\[-\frac{1}{p} \int_{-\infty}^{\infty} dz \text{Im } W(b, z) = n_{\text{in}}(b) \quad , \quad \int d^2b n_{\text{in}}(b) = \sigma_{\text{in}} \]
Inversion
Inverse scattering and optical potential

In the eikonal approximation one has

\[\Psi(\vec{x}) = \exp \left[ipz - \frac{i}{2p} \int_{-\infty}^{z} U(\vec{b}, z') dz' \right] \]

\[\chi(b) = -\frac{1}{2p} \int_{-\infty}^{\infty} U(\sqrt{b^2 + z^2}) dz = -\frac{1}{p} \int_{b}^{\infty} \frac{rU(r)dr}{\sqrt{r^2 - b^2}} \]

is the (complex) eikonal phase [Glauber 1959]. This Abel-type equation can be inverted:

\[U(r) = M_N V(r) = \frac{2p}{\pi} \int_{r}^{\infty} db \frac{\chi'(b)}{\sqrt{b^2 - r^2}} \]
On-shell optical potential

From the definition of the inelastic cross section

\[
\sigma_{\text{in}} = -\frac{1}{p} \int d^3x \ \text{Im} \ U(\vec{x})|\Psi(\vec{x})|^2
\]

→ density of inelasticity is proportional to the absorptive part of the optical potential times the square of the modulus of the wave function. One can identify the on-shell optical potential as

\[
\text{Im} \ W(\vec{x}) = \text{Im} \ U(\vec{x})|\Psi(\vec{x})|^2
\]

Upon \(z\) integration,

\[
-\frac{1}{p} \int dz \text{Im} \ W(\vec{b}, z) = n_{\text{in}}(b)
\]

Inversion yields

\[
\text{Im} W(r) = \frac{2p}{\pi} \int_{r}^{\infty} db \frac{n'(b)}{\sqrt{b^2 - r^2}}
\]
The hollowness transition

exp. amplitude \rightarrow eikonal phase \rightarrow $U(r) = M_N V(r)$
exp. amplitude \rightarrow inelasticity profile \rightarrow $W(r)$

From top to bottom: $\sqrt{s} = 14000, 7000, 200, 23.4$ GeV
Large dip in the absorptive parts, in $W(r)$ starts already at RHIC!
No classical folding of absorptive parts

The hollowness effect cannot be reproduced by by folding of uncorrelated proton structures. We would then get, small r

$$W(r) = \int d^3y \rho(\vec{y} + \vec{r}/2) \rho(\vec{y} - \vec{r}/2)$$

$$= \int d^3y \rho(\vec{y})^2 - \frac{1}{4} \int d^3y [\vec{r} \cdot \nabla \rho(\vec{y})]^2 + \ldots$$

$\rightarrow W(r)$ would necessarily have a local maximum at $r = 0$, in contrast to the phenomenological result

\rightarrow not possible to obtain hollowness classically by folding the absorptive parts from uncorrelated constituents
2D vs 3D opacity

Projection of 3D on 2D covers up the hollow: \(f(x, y, z) \) vs
\[\int_{-\infty}^{\infty} dz f(x, y, z) \]

The hollow is covered up
Aspects of unitarity: model of [Dremin 2014]

\[2p\text{Im}h(b) \equiv k(b) = 4X e^{-b^2/(2B)}, \quad \text{Re}h(b) = 0, \quad X = \sigma_{el}/\sigma_T \]

\[n_{in}(b) = 2k(b) - k(b)^2 = 8X e^{-b^2/(2B^2)} - 16X^2 e^{-b^2/B^2} \]

\[\bullet \quad X > 1/4: \, n_{in}(b) \text{ has a maximum at } b_0 = \sqrt{2}B \log(4X) > 0, \text{ with } k(b_0) = 1 \]

\[\bullet \quad X = 1/2: \, \text{black disk limit} \]

\[\bullet \quad W(r) \text{ develops a dip when } X > \sqrt{2}/8 = 0.177 \]
Cross sections

Ratio goes above 1/4 as energy increases!
Aspects of unitarity 2

If \(2p \chi(b) = \chi(b) \) is not necessarily Gaussian but purely imaginary, then

\[
n_{in}(b) = 2\chi(b) - \chi(b)^2
\]

\[
\frac{dn_{in}(b)}{db^2} = 2\frac{d\chi(b)}{db^2} [1 - \chi(b)]
\]

hence the minimum of \(n(b) \) moves away from the origin when \(\chi(0) > 1 \)

The real part of the amplitude, which is \(\sim 10\% \), brings in corrections at the level of \(1\% \)
From 1000+GeV to 1000+eV
Epilogue

- Are low energy nuclear reactions and high NN interactions that different?

$\sqrt{s} = 7 \text{ TeV}$

$\sqrt{s} = 23-62 \text{ GeV}$

$E = 600 \text{ MeV}$

$E = 100 \text{ MeV}$
Conclusions

- There is a **hollowness transition** at $1000+\text{ GeV}$
- Quantum effect, rise of $2p\text{Im}h(b)$ above 1
- Not possible to obtain classically by folding the absorptive parts from uncorrelated constituents
- $2\text{D} \rightarrow 3\text{D}$ magnifies the effect (flat in 2D means hollow in 3D)
- Microscopic/dynamical explanations open [Alba Soto, Albacete 2016]
- Similar hollowness effect in low-energy n-A scattering