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Higher twists In proton structure: motivation
Higher twists at high energy: QCD picture
Higher twists corrections to DIS from GBW

Breakdown of DGLAP in DIS and interpretation in terms of
higher twists

® Combined DGLAP + GBW inspired HT fits to HERA data
® Conclusions

Based on analysis done by
M. Sadzikowski, W. Stominski, K. Wichmann and LM



Entanglement /| complementarity /| problem with
linearization

® The higher twist problem at small x is complicated theoretically and
experimentally: parallel and entangled efforts are necessary to find
meaningful results

® Theory efforts pioneered by Furmanski and Petronzio, Petersburg
Gribov School, Bartels, Kwiecinski, Prasztowicz, Golec-Biernat and
Wausthoff (more than 30 years of theoretical physics!)

® Only recently beautiful analysis of final HERA data provided a strong
experimental input

® Fruitful dialogue of theory and experiment — 3 following talks on the
topic of HERA data beyond DGLAP from different perspectives. Talk
by K. Wichmann: based on published results, this analysis Is
completed and will be out soon



General motivation for higher twist investigation
program
B S
® Standard QCD descriptions based on leading-twist
DGLAP is very successful and precise

® However, theory of twist-related issue of multiple
scattering Is not yet satisfactory and higher twist
corrections to DGLAP are unknown

® Good understanding of higher twists -
— broadening of QCD applicability

— better precision, qualitative determination of DGLAP
limitations

— better determination of parton densities
— novel observables in proton structure



Deeply Inelastic Scattering: how?

® Unpolarised structure functions do o
_ Yem

W WH (p.q)

Fl ] F2 or F2 f FL AdQdE! Q4

p,t.apv

WH — _ Fl g,u,;u 4 F2

L/

® OPE: product of local operators in separated

points A\ T2
Wh = — CH @ fri(Q%/A?
Z(Q) Z @ fri(Q%/A%)
® Twist = dimension — spin: gives the Q dependence =
® Leading twist = 2: DGLAP Df:(0?)
evolution (high precision) Dog(0?) as(Q°)Pji ® f;(Q°)

® ‘Easy', efficient but... limited at moderate Q?



Twists at small x in a nutshell (1)

® Higher twists effects: power

T—2
WHY _ z (ﬁ) Z C’f; ® fri(Q%/A)

suppressed by hard scale: —\Q ;

Typical operators: (PlaV{u1Dus - - - Dpnyalp) = (™) q Puy - - - Pun
Wh at iS kn own Complete twist 4 analysis o gGgg evolution [Ellis, Furmanski and Petronzio, 1983]

on higher twists

In proton?

Understanding of twist-4 gluonic (gggg) operators — still on the way
However — dominant contribution should
come from quasipartonic operators
(for which: twist = number of free partons in t-channel)

(0.AD)2(0.A%)2, D)



Twists at low x in a nutshell (2)

Evolution of quasi-partonic operators: n-tchannel partons +

pairwise (non-forward) DGLAP interactions [Bukhvostov, Frolov, Lipatov,
Kuraev, 1985]

More rapid QCD evolution Twist 4 1
of higher twists with x Twist 2 Q?R?

exp ( \/blog(@?) log(1/2))

Significant corrections to precise parton determination, dependent
on x and Q°

Quasi-partonic operators: relation of higher twists to multiple
scattering, multiple parton densities and parton correlations

Higher twists: expected to affect some LHC measurements that
reach much lower x than HERA: important to control them



Difficulties In rigorous treatment of higher twists

First-principle theory of higher twists: highly involved, few studies
done within decades, not complete

To provide reliable predictions: a lot of input from measurements
IS hecessary — missing so far

So - adopt at first a simplified picture: QCD guided model of
rescattering with unitarity constraints

Most advanced QCD studies of rescattering provided so far in
the high energy limit, in kT-factorisation approach and small-x
resummations (of logs(1/x) )

Efficient tool to address the problem of multiple scattering:
QCD guided saturation model



QCD insight: 4-gluon evolution at twist 4

At small the dominant contribution should come from diagrams of the type:
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For twist-4, N. — oo, in the leading ag ]og(Qg) log(1/a) approximation dominant singularity:
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coming from two independent DGLAP evolutions

Corrections — color reconnections between ladders supressed by ~ 1}1\? [Bartels, Ryskin, 1993]
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Multiple scattering in DIS at high energies
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Multi-gluon coupling in high energy limit —— photon-gluon vertex fusion governs all couplings

®,, ~ al /dgp /dz > " Color(F) V*(z,p'(F)) V (2, p)
: : —

After projection on symmetric multiple color singlet, and the Fourier transform result is simple

Dy, ~ al /dg-r /dz T (z,r) ﬁ [2 _ il _ e_ikir] U(z,r)
: : i=1
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Saturation model vs DGLAP

Taking factorized and symmetric form of unintegrated multi-gluon density

—;%i {k }) Z 5{10{1)“0{2) o 50'(:[211—1}&0{2?1})“([1?? ka’[l}' kg[ﬂ]) - f(;'[:__ kﬂ'{ﬁ?‘l—l}‘- kg{g}”)

Invoking AGK rules one obtains the Glauber-Mueller form used by GBW

(-, 2 2 T d°k; o, f(x, k) ike;r —ik;r
~ R /drd NERST | | T - [2—6‘. _e }

i=1, P

single dipole scattering xs: o (x,r2)/R2

&[En}

In collinear limit (k* < C/r?) dipole cross section coincides with DGLAP improved saturation
model [Bartels, Golec-Biernat, Kowalski]

(__"X'r ,' .
o1(z, 1%) ~ as(C/r )/ — f(z. k%) (K°r®) ~ r° o (C/r°) zg(z, C/r?)
Resummed cross section:

oa(z,r?) ~ R[1 — exp(—o1(x, 72)/R%)]
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Higher twist extraction from original GBW

Simple Q*-Mellin structure of the GBW model — simple poles of

Yy iImpact factor * simple poles of the dipole cross-section — analytic twist
decomposition of saturation [Bartels, Golec-Biernat, Peters, 2000]:

® Twist 2 . Xm0
T = — (e 2} Sa"’ {log(Q*/Q%.) + v+ 1/6}
(t=2) OemO( 2 gat
gr, — - <€ > 0?2
® Twist4
;7= _ §a6m00< 2> T .
4 5 Q*

T= 1 em b
oy ™ = 5= ) it {108(Q/QR) + e +1/15
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Inclusion of QCD evolution (B-GB-K):

Mellin structure of DIS [Bartels, Golec-Biernat, LM 2009]
I A A

Mellin transform of perturbative part od dipole cross section — term by term

Mol(xz,8) = M [Z (=1) JT’] (z,8) = ZM[Jﬁ](m,S)

n=1 n=1

M o[of](xz,8) o« M

ﬂg[(ﬂ:(mg)n](if, s+ n)

T ‘r Im(s) T (s)
[Hcl(s)
H%s. I(s) .\ i l
WMWW RE@ RARREAONNAR gy ) RE(SL
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Single ladder exchanges Multiple ladder exchange
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Results In DIS: generic features [Bartels, Golec-Biernat, LM 2009]

Key information: twist 2 and twist 4 poles of the box diagram

) +al?) @ 9 saem [@dQ? 2
Y f S5

L) - p(2) - )
oL (v) L= of) ~ L Y i@y (e, Q%)
v —1 QT
(4)  (4)
B +by (4) +by 2 Oem
T(T)NT_Q = o’ ~ o1 Zf:ﬂfw[ (@Y zg(z, Q%))
(4) (4) 02 r2
= — (4) R 2 Qe ¢ dQ) _ 2 1219
2r(y) ~ (v — 2)2 ey ™ Q4 Zf:ﬂf — [:2% F[OS(Q Jzg(z, Q)]
—A 2 2 - .2 —2A 1 -
Fr: twist-2: agx™ " log(Q*)/Q° — large, twist-4 : a x”7 " /()" — suppressed correction
R S N P T . 4 2 21 2 4 :
Fr: twist-2: a7 /Q° — small, twist-4: —a x” " log((”) /@~ — enhanced correction

Fy: twist-2: o, 27 log(Q?)/ Q2

Fo: twist-4 : [bé;” — a.gil} log(QQ)] ag J:_EJ‘XQil — correction supressed by the sign structure
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Pattern of HT corrections from GBW
[Bartels, Golec-Biernat, LM 2009]
I A

Twist ratios: tw-2/exact

Higher twist contribution at
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Fresh new twist in higher
twists at small x - DIS2014

® Key source of progress:

combination of all HERA DIS data

- talk by K.Wichmann
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H1 and ZEUS preliminary

HERAPDF2.0 (prel.)
V. Radescu (DESY)

[ ]

On behalf of H1 and ZEUS

DS

Warsaw, 28 April - 2 May 2014

Related Subjects

r'y

HERAPDEF2.0 (prel.)

v NLO
4 NNLO

y 1/dof = 1386/1130

At Q2. =10 is when

the fit stabilises with

respect of chi2/dof vs Q%cut
|

For Q% .= 3.5 GeV?
Chi2/dof (NLO) =1386/1130

= Chi2/dof(NNLO)= 1414/1130
’ For Q2= 10 GeV?
v /dof = 1156/1001 Chi2/dof (NLO) = 1156/1001
A . X Chi2/dof(NNLO)= 1150/1001
¥
1 " 1 L L M L 1 1 L L L f L M L L 1 L L L 1 1 1 L L
5 10 15 20 25 30
Q2 cut/ GeV’

Voica Radescu| DESY D15 - Warsaw | HERAPDF2.0

XXl International Waorkshop en Deep-Inelastic Scattering and
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DGLAP fit problems at e el r=l

low X and low QZ On behalf of H1 and ZEUS

B S Warsaw, 28 April - 2 May 2014

XX International Workshop on Deep-Inelastic Scattering and
REIBLed SUBIEEIS oy sy

Low Q7 Data vs HERAPDF2.0 (Q?.....=10 GeV?)

min
¢ How does fit performed with Q2min=10 GeV2 describe the low Q2 data?
H1 and ZEUS preliminary

NS Q*=2Gev’ | Q'=27Gev" | Q'=35Gev? | Q% =4.5 GeV?
ﬁ 1 [z -, - ., B ® HERA NC ¢'p (prel) 0.5 b
&) i T, i ... Vs = 318 GeV
+Z" * . <., """---,, "'t-_,_‘\. == HERAPDF2.0 (prel.)
e i I W h NNLO, @}, =10 GeV*
L Q'=65Gev | Q'=85Gsv" | Q'=10GeV? | Q'=12GeV?
- -k i i .
1+ ¥ — "\ — — Poor description of the data for
i l"'.__q_ i ... Q<10 GeV? when these data are
0 :LL,I‘I rou ||I|||‘ I|I|II| Ilr:l“k— II|||J |||IIJ piilng |I|||||| ||+‘|I‘II_|||||‘ |IIIJ ||I|L|_‘ 1 iiii pil _||I||‘ 1 |III‘ |I||||J |I||||| Ll nDt IHCIUdEd In the ﬁt:

-3 -- predictions systematically

2 2 get worse for low x, Q2
Q" =4.5 GeV

{higher order do not help)

Q%*=3.5GeV?
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Strategy for higher twist analysis in low x HERA data

® Use full range of precision data: dominance of the DGLAP
regime — need to maintain the highest quality of twist-2
DGLAP analysis

® Provide QCD inspired model of twist-4 correction

® Perform com
the model of

® Analyse resu

Q2 S Q2 min

pined fit of DGLAP (input parameters) and
nigher twists

ts in terms of ¥ / d.o.f. for data set with

® Successful approach to higher twists in DDIS
[Sadzikowski, Stominski, LM, 2012]

18



Higher twist model inspired by GBW (hew analysis)

I a4
® Twist 4 from GBW:. [Bartels, Golec-Biernat, Peters, 2000], note the
geometric scaling property
4
(T:4) 3 OfemUO 2 sat
= - e
i 5 P < > Q4

4

— 4 em sa
oy~ = =) i {10a(@%/QE) + v +1/15)

® More flexible parameterisation of the twist-4 effects with geometric scaling:

2 2
(r=4) Q5() —2x | (0) (log) @ 1 =
FT/L — —Q2 x [CT/L+CT/% <log—Q2+)\logE

® Note steep x-dependence of twist-4 corrections
® Constraint from photon impact factor: ¢ (9 = 0

19



Parton saturation and DGLAP input

® In collinear framework QCD saturation effects manifest themselves in two
ways: by modification of inputs at all twists (rescattering below factorisation
scale) and by higher twist corrections (resc. above factorisation scale)

® We modify 12y _ 300 K e
gluon and f9($7 T) A2 QE(LU) € p( Q /QS(£U>>
sea quark & g
iInput rg(z, Q2) - / 12 — fy(x, k? ) ~ 00Q4/Q§(g;) N@ for © < Q. ()

zg(x, Q%) ~ 00Q3(x) ~ z7* for Q > Q4(x)

J?w ~ oo(1 + clog(Q?(x)/Q?)) ~ const(x) modulo logs

® For Q below Q_(x): xg(x,Q?) ~ x*, and xg___(x,Q*) — const(x)

sea

Input Freezing' at very small x

20



Parton ‘input freezing'

Standard DGLAP input without freezing':
— gluon small x rise tamed by a negative correction

— sea quark small x rise not tamed

Our approach with freezing':

—b
x P9 . b
W oc N .y 209
1 pd
+(7)
_bq
T sea () MG * ~ 1
—0
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Data fitting scheme

I 4 4
® Take all combined HERA data with Q > 1 GeV (1200+ points)

2(1 —y) y?
T e T (Y Py

® Fit with standard DGLAP: NLO and NNLO and with
DGLAP NLO and NNLO with twist-4 corrections and parton freezing

® RTOPT heavy flavour treatment

® Systematic,statistical, correlated and uncorrelated data uncertainties
treated with HERA-FITTER

® Vary lower cut-off Q . on Q values and check dependence of x* and

fit parameters
22



Fit results with and without higher twist corrections:

New x? at NLO and NNLO
Q=1x<1 Allet

15 l 1 IIII'IIIIIIIII 15 -:\. ' 1 IIIIIIIIIIIIII
HT+freeze NLO F——<— HT+freeze NNLO F—<—
14 1= HT NLO 7 lar= 7 HT NNLO 7
1.35 —%-\ freeze NLO — 1.35
o 1.3 N ‘ ' ' W 1.3
1.25 1.25
1.2 1.2
1.15 3 1.15 3
ll I 1 IIIIIIIIIIIIII ll I 1 IIIIIIIIIIIIII
1 2 4 8 16 1 2 4 8 16
2 2
Q min Q" min
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Fit results — continued

New x2 at NLO and NNLO

Q’=1x<1, Alle*

1.5 I I ‘ 1 I 1 I | L I I ‘ 1 I I
f std NNLO F———
LAS =N Std NLO ---3--- 7]
14 ‘ HT+freeze NNLO
' HT+freeze NLO
135 x. 1\ HT NNLO ——&— _|
e HT NLO ---©---!
“ 1.3 ' '
1.25
1.2
1.15
1.1
1 2 4 8 16
2
Q" min

Higher twist model
iImproves data
description

Improvement much
stronger with NNLO
DGLAP

Input freezing helps

Nearly flat ¢(Q? . )
obtained

Effects of HT visible
above 10 GeV?
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Resulting higher twist parameters

¥~ 1.5 * 104 e
s : :

X2 and twist parameters vs. szm

NNLO Q,2=1,x<1, Alle*
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Interpretation and conclusions:

® DGLAP + GBW inspired model of twist-4 works very well
for the combined HERA data

® A good description of precision DIS data down to Q=1GeV

e The “saturation parameters”: x, and A are consistent with
expectations, double ladder' x-dependence found

® Theoretical puzzle twist 4 correction to F found with the

opposite sign! — go back to more sophisticated QCD HT
analysis by Bartels and Bontus?

® Possible need for saturation effects in the DGLAP input
26
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Higher twists in DDIS: impact on ¥

Procedure:

1) Take data with Q*> Q*

2) Fit with DGLAP,
calculate y?

3) Fith with DGLAP and

F > 0,035,

Gl AP — Twist 4—5 —il—

yerH

free o in higher twist terms

and calculate y*

Fit with higher twists gives much better description but still

not perfect

“+”. higher twist description strongly constrained

sziw |GE""'r2|

arbitrary cut-off in twist series



Higher twists from small-x resummations

Bootstrap: Reduction
Vl ;

® BFKL bootstrap (LL) — only one (reggeized, composite) gluon
couples to one fundamental (quark) line

® Common double logarithmic limit of BFKL nad DGLAP evolutions -
eikonal multi-gluon coupling is unrealistic — cut off of some higher

twists
® Singularity structure of BFKL is well known

30



Multiple scattering with small x resummation

® The basis: Balitsky-Fadin-Kuraev-Lipatov equation: resummation of leading

and next-to-leading log(1/x)

® Multi-gluon exchanges: Bartels-Kwiecinski-Praszatowicz equation (pairwise

BFKL interactions)

® Change of the number of t-channel gluons — possible: Bartels, Ewerz

(EGLLA), Balitsky, Kovchegov

, e
- A

® Double logarithmic limit — strong
ordering in BFKL / BK evolution -

— triple pomeron vertex vanishes
[J. Bartels, K. Kutak]

® BK evolution reduces to DLA
BFKL/DGLAP evolution

@ In this limit saturation effects appear
In inputs for twist evolution

® Consistent with collinear calculations
of quasi-multipartonic operator
evolution by Bukhvostov, Frolov,
Lipatov, Kuraev, 1985

31



In BFKL/BK pattern of higher twists modified
substantially, different from GBW

B
® Twist 2 — similar, but no multiple ladder growth in twist 4

and higher twists [M. Sadzikowski; LM, 2014]

2 1/4 2/5Y 2 2\/GYi
(2) _ g2 Qo) !/ He?V Tt () _ 2 Qo\~ e
Or —R;,AG\/E( Q) 3(G,Y )/ of —R;,A[}\/?_T 0 (oY)

4 2\/0Yi—20,Y 4 g.1/4 2\/0,Y1—-20,Y
(4) 2 Qo e 4 Qo \ 4t'%e
o1 _R’“AO‘/E( Q ) 5(a,Yr)t/e o1 = _Rf’AOﬁ< 0 ) 15(0ch>3$

® EXxponential suppression Wit'h rapidity: at very small x and
moderate Q much smaller contribution of higher twists

® Curiously, twist-2 effective cross-section of BFKL found to be
close to twist 2+4 effective cross-section of GBW
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