Pair correlations in *D*-meson production at the LHCb within the framework of Parton Reggeization Approach

A.V. Karpishkov, M.A. Nefedov, V.A. Saleev, A.V. Shipilova

Samara National Research University

28.06.2016 HSQCD 2016, PNPI

Outline

Introduction to the Parton Reggeization Approach (PRA)

- k_T -factorization, motivation for the PRA
- $\bullet~{\rm Effective}~RR \to g~{\rm and}~RR \to c\bar{c}~{\rm vertices}$
- Factorization formula
- Single D-meson production
 - Fragmentation approach. Subprocesses in the LO PRA
 - Numerical results
- **(a)** $D\overline{D}$ and DD pair production
 - Fragmentation approach. Subprocesses in the LO PRA

2/22

Numerical results

Motivation for k_T -factorization and PRA

- Heavy final states (Higgs bosons, $t\bar{t}, \ldots$) produced by large- $x \sim 10^{-1}$ initial partons \leftarrow soft and collinear gluons
- Light final states (small- p_T quarkonia, single jets, prompt photons, ...) produced by small- $x \sim 10^{-3}$ initial partons \leftarrow additional hard jets
- To obtain the agreement with experimental data one needs to perform the pQCD calculations in NLO and higher ⇒ much time and computational resources are involved.

3/22

Motivation for k_T -factorization and PRA

• In the region of small $x \sim \mu/\sqrt{S}$ most of the initial-state radiation is highly separated in rapidity from the central region, and can be factorized. In the small-*x* regime, initial-state partons carry the substantial transverse momentum (virtuality) $|\mathbf{q}_T| \sim x\sqrt{S}$, in contrast with the standard Collinear Parton Model (CPM), where $|\mathbf{q}_T| \ll x\sqrt{S}$, and can be neglected. This is the standard setup of the k_T -factorization [L. V. Gribov et. al. 1983; J. C. Collins et. al. 1991; S. Catani et. al. 1991].

The old k_T -factorization approach contains a prescription for a polarization vector of initial-state gluon with 4-momentum $q = (q_0, \mathbf{q}_T, q_z)$:

 $\epsilon^{\mu}(q) = \frac{q_T^{\mu}}{|\mathbf{q}_T|} \Rightarrow$ no gauge invariance for 3- and 4-gluon vertices; no generally accepted prescription for the treatment of off-shell initial-state quarks.

• We need special conditions for a gauge-invariant description of the processes with the off-shell initial state partons. The Reggeization of the amplitudes in QCD solves this problem.

In present time, two methods to generate the gauge-invariant amplitudes for the k_T -factorization are proposed:

- The QCD in the Regge limit (see e. g. [B. Ioffe, V. S. Fadin, L. N. Lipatov, QCD Perturbative and Nonperturbative aspects] and [L. N. Lipatov, Nucl. Phys. B452 (1995) 369]).
- Methods based on the extraction of certain asymptotics of the amplitudes in the spinor-helicity representation (see e. g. [A. van Hameren et. al., Phys.Lett. B727 226 (2013)]).

Effective Fadin-Kuraev-Lipatov vertex.

Using \mathbf{Rg} and \mathbf{Rgg} vertices, the Fadin-Kuraev-Lipatov $RR \to g$ vertex can be constructed:

the effective vertex is gauge-invariant, even for the off-shell initial state partons $(q_{1,2}^2 < 0, (q_1 + q_2)^2 = 0)$:

$$(q_1 + q_2)_{\mu} \Gamma_{abc}^{-\mu+}(q_1, q_2) = 0.$$

It contributes to the $RR \rightarrow c\bar{c}$ vertex:

Factorization of the cross section

Factorization:

Factorization formula:

$$d\sigma = \int \frac{d^2 \mathbf{q}_{T1}}{\pi} \int \frac{dx_1}{x_1} \Phi(x_1, t_1, \mu_F) \times \int \frac{d^2 \mathbf{q}_{T2}}{\pi} \int \frac{dx_2}{x_2} \Phi(x_2, t_2, \mu_F) d\hat{\sigma}_{PRA}$$

Where Φ - Unintegrated PDFs.

Partonic cross section:

$$\begin{split} d\hat{\sigma}_{PRA} &= \frac{(2\pi)^4}{2x_1 x_2 S} \overline{|\mathcal{M}|^2}_{PRA} \delta^{(4)}(P_{[i]} - P_{[f]}) \times \\ &\times \prod_{j=[f]} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2 p_j^0}, \end{split}$$

Normalization of the unPDF:

$$\int^{\mu^2} dt \Phi(x,t,\mu^2) \approx x f(x,\mu^2),$$

where $f(x, \mu^2)$ - collinear PDF, implies, that the *collinear limit* holds for the amplitude (at the *small x*):

$$\int \frac{d\phi_1 d\phi_2}{(2\pi)^2} \lim_{t_{1,2} \to 0} \overline{|\mathcal{M}|^2}_{PRA} \approx \overline{|\mathcal{M}|^2}_{CPM}$$

イロト イロト イヨト イヨト 三日

Fragmentation approach. Subprocesses in the LO PRA

In the fragmentation approach [B. Mele, P. Nason, 1991], the cross section of the inclusive production of *D*-meson is related with the parton cross section as follows:

$$\frac{d\sigma}{dp_T dy} \left(p + p \to D_i(p) + X \right) = \sum_a \int_0^1 \frac{dz}{z} D_i(z, \mu^2) \frac{d\sigma}{dq_T dy} \left(p + p \to a(p/z) + X \right)$$

where $D_i(z, \mu^2)$ -fragmentation function for the meson D_i (which depends on μ -scale unlike the Peterson ansatz). In our calculations we use the LO set of FFs by [B. A. Kniehl, G. Kramer *et. al.*] fitted on the e^+e^- annihilation data. We take into account the following parton subprocesses:

$$R(q_1) + R(q_2) \quad \to \quad g(q_3) \left[\to D(p) \right], \tag{1}$$

$$R(q_1) + R(q_2) \quad \to \quad c(q_3) \left[\to D(p) \right] + \bar{c}(q_4), \tag{2}$$

where $q_1^2 = -\mathbf{q}_{T1}^2 = -t_1$, $q_2^2 = -\mathbf{q}_{T2}^2 = -t_2$. Subprocess (2) contains the collinear divergence, which is regularized by the finite m_c .

Pair correlations in D-meson production at the LHCb within the framework of Parton Reggeization Approach Numerical results for single D-meson production

LHCb data, 2.0 < y < 4.5, $\sqrt{S} = 7$ TeV.

Figure 1: Transverse momentum distributions of D^0 and D^+ mesons in *pp* scattering with $\sqrt{S} = 7$ TeV and 2.0 < y < 4.5. Dashed line represents the contribution of gluon fragmentation, dash-dotted line – the *c*-quark-fragmentation contribution, solid line is their sum. The LHCb data at the LHC are from the [LHCb Collaboration, R. Aaij *et al.*, Nucl.Phys. **B871**, 1-20 (2013)].

Pair correlations in D-meson production at the LHCb within the framework of Parton Reggeization Approach Numerical results for single D-meson production

LHCb data, 2.0 < y < 4.5, $\sqrt{S} = 7$ TeV.

Figure 2: Transverse momentum distributions of $D^{\star+}$ and D_s^+ mesons in pp scattering with $\sqrt{S} = 7$ TeV and 2.0 < y < 4.5.

Pair correlations in D-meson production at the LHCb within the framework of Parton Reggeization Approach DD and $D\overline{D}$ pair production

Fragmentation approach (pair production). Subprocesses in the LO PRA.

In case of pair D-meson production we can write down the cross section of the inclusive pair production of D-mesons in the following form:

$$\begin{aligned} \frac{d\sigma}{dp_{TD}dy_{D}dp_{T\overline{D}}dy_{\overline{D}}}\left(p+p\to D_{i}(p_{D})+\overline{D}_{j}(p_{\overline{D}})+X\right) = \\ = \sum_{ab} \int_{0}^{1} \frac{dz_{1}}{z_{1}} D_{i}(z_{1},\mu^{2}) \int_{0}^{1} \frac{dz_{2}}{z_{2}} D_{j}(z_{2},\mu^{2}) \frac{d\sigma}{dq_{3T}dy_{3}dq_{4T}dy_{4}} \left(p+p\to a(\frac{p_{D}}{z_{1}})+b(\frac{p_{\overline{D}}}{z_{2}})+X\right) d\sigma \end{aligned}$$

We take into account the following partonic subprocesses:

$$R(q_1) + R(q_2) \quad \to \quad g(q_3) \left[\to D(p_D) \right] + g(q_4) \left[\to \overline{D}(p_{\overline{D}}) \right], \tag{3}$$

$$R(q_1) + R(q_2) \quad \to \quad c(q_3) \left[\to D(p_D) \right] + \bar{c}(q_4) \left[\to \overline{D}(p_{\overline{D}}) \right], \tag{4}$$

where $q_1^2 = -\mathbf{q}_{T1}^2 = -t_1$, $q_2^2 = -\mathbf{q}_{T2}^2 = -t_2$. Subprocesses (3) and (4) contains the collinear divergence, which is regularized by the finite m_c .

Collab. R. Aaii et al., JHEP 1206, 141 (2012)].

11 / 22

 $D^0 D^-$ spectra

Figure 4: $\Delta \phi$, p_T , Y, and $M_{D\bar{D}}$ spectra for $D^0 D^-$ pair. LHCb data from the [LHCb Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)].

 $D^0 D_s^-$ spectra

Figure 5: $\Delta \phi$, p_T , Y, and $M_{D\bar{D}}$ spectra for $D^0 D_s^-$ pair. LHCb data from the [LHCb Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)].

 D^+D^- spectra

Figure 6: $\Delta \phi$, p_T , Y, and $M_{D\bar{D}}$ spectra for D^+D^- pair. LHCb data from the LHCb $\Im \Im \Im$ Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)]. 14/22

 $D^+D_s^-$ spectra

Figure 7: $\Delta \phi$, p_T , Y, and $M_{D\bar{D}}$ spectra for $D^+D_s^-$ pair. LHCb data from the [LHCb $\Im \Im \Im \Im$ Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)].

Summary of $D\overline{D}$ production

• We can see that the $RR \rightarrow c\bar{c}$ contribution lies upper than $RR \rightarrow gg$. This subprocesses have the same order of α_S but the probability of fragmentation of *c*-quark into *D* meson is higher than the gluon one.

 $D^0 D^0$ spectra

Figure 8: $\Delta \phi$, p_T , Y, and M_{DD} spectra for $D^0 D^0$ pair. LHCb data from the [EHCb $\equiv \bigcirc \bigcirc \bigcirc \bigcirc$ Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)].

 $D^0 D^+$ spectra

Figure 9: $\Delta \phi$, p_T , Y, and M_{DD} spectra for $D^0 D^+$ pair. LHCb data from the [LHCb $\sim \bigcirc \bigcirc \bigcirc \bigcirc$ Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)].

 $D^0D_s^+$, D^+D^+ , and $D^+D_s^+$ spectra

Figure 10: p_T spectra for $D^0 D_s^+$, $D^+ D^+$, and $D^+ D_s^+$ pairs. LHCb data from the [LHCb Collab. R. Aaij *et al.*, JHEP **1206**, 141 (2012)].

Pair correlations in *D*-meson production at the LHCb within the framework of Parton Reggeization Approach Numerical results for $D\overline{D}$ and DD pair production Double Parton Scattering

Double Parton Scattering approach

$$d\sigma^{DSP} = \frac{1}{2\sigma_{eff}} d\sigma^{SPS} * d\sigma^{SPS}, \ \sigma_{eff} = 15 \ mb \tag{5}$$

Figure 11: The result of calculation in the double parton scattering approach: the $RR \rightarrow gg$ contribution to the $\Delta \phi$ spectra for $D^0 D^0$ from [Rāfal Māciula, Vladīmir A. $\Im \otimes \Im$ Saleev, Alexandra V. Shipilova, Antoni Szczurek, arXiv:1601.06981 (2016)]. 20/22

Conclusions

- In the single D-meson production the contribution of the $RR \rightarrow g [\rightarrow D]$ subprocess has been found to be significant. There is not such contribution in the Collinear Parton Model.
- We have described the inclusive pair production of $D\overline{D}$ mesons in the Parton Reggeization Approach within uncertainties and without any free parameters.
- In case of $D\overline{D}$ production we can see that the $RR \to c\overline{c}$ contribution lies upper than $RR \to gg$. This subprocesses have the same order of α_S but the probability of fragmentation of *c*-quark into *D* meson is higher than the gluon one.
- The $RR \rightarrow gg[\rightarrow D^0D^0]$ contribution calculated in the PRA lies very close to the experimental data. Using ReggeQCD module for FeynArts we can obtain the $RR \rightarrow c + \bar{c} + g$ amplitude to calculate this contribution in *DD* production cross section. We estimate that it would be possible to describe the *DD* pair production without involving of the double parton scattering approach.

Thank you for your attention!

