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Need for QCD factorization:  

Description of hadronic reactions involves QCD calculations 
at both high and low energies. However, QCD is poorly 

known at low energies; the confinement problem has not 

been solved, so approximation methods are needed to 

mimic the straightforward QCD calculations at low energies. 
QCD factorization is the most popular approximation 

method.  

 

Essence of QCD factorization:  
First, non-perturbative inputs are introduced through either 

models or fits. 

Second, the inputs are evolved with perturbative means 

(evolution equations).  
 



Non-perturbative inputs for parton distributions in hadrons are introduced 

through the models and fits. Alternatively, there are lattice calculations                                 
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Scenarious  of hadronic collisions at high energies                                
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Single-Parton Scenario for the parton-hadron scattering                               
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Single-Parton Scenario is much more popular than Multi-Parton one, 
so in the present talk I will focus on SINGLE-PARTON COLLISIONS  

though a generalization to Multi-Parton Scattering is easy to obtain                               
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Getting it squared, we arrive at the parton distribution                                
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    Collinear Factorization  

 S. Catani - M. Ciafaloni – F. Hautmann 

                                            J.C. Collins, R.K. Ellis 

Amati-Petronzio-Veneziano, Efremov-Ginzburg-Radyushkin, Libby-Sterman,  

Brodsky-Lepage, Collins-Soper-Sterman 

  

KT- Factorization/High-Energy Factorization  

These two conventional forms of  factorization were introduced from  

different considerations and are used for different perturbative  
approaches 

 

 Recently we suggested a new, more general kind of factorization:  

Basic Factorization  

We showed how to reduce it step-by-step to KT and Collinear  

Factorizations, keeping the non-perturbative inputs in a general form 

The  kinds of  QCD factorization available  in the literature: 



q 
q 

k 
k 

p p 

Perturbative 

blob 

Unintegrated 

parton 

distribution 

q 
q 

k k 

p p 

Perturbative 

blob 

Integrated 

parton 

distributions 

Collinear Factorization  KT- factorization  

Pictures look identically but formulae differ 

NB Standard Feynman diagram technique cannot be 

applied to  these graphs 

Conventional illustrations of Factorizations 
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Different Factorizations imply different parameterizations of 
momenta of the connecting partons  
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  Actual situation is more involved: 

and all components of k should be accounted  for 
k =[𝒌𝟎, 𝒌𝒙, 𝒌𝒚, 𝒌𝒛] 

For instance, all of them are present in Sudakov representation 

𝒌 =  𝜶 𝒒 +  𝜷 𝒑 + 𝒌⟘ 

𝒅𝟒k = 𝒅𝟐𝒌||𝒅
𝟐𝒌⏊= (s/2)d𝜶𝒅𝜷𝒅𝟐𝒌⏊ ≈ 𝝅𝐬d𝜶𝒅𝜷𝒌⊥𝒅𝒌⊥ 

Kinematical contents of       and          

so that  
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  by this reason  the       -dependence is often neglected        

compared to   the          -dependence 

𝜶  
𝜷  

parton energy 

hadron energy 



A(𝑺𝒒, 𝑺𝒉,w,q2) =  
𝒅𝜷

𝜷
 𝒅𝒌𝟐⊥𝒅𝜶 𝑨

𝒑𝒆𝒓𝒕 (𝑺𝒒,𝒘𝜷,𝒒
𝟐, 𝒌𝟐)

𝒌𝟐⊥
𝒌𝟐𝒌𝟐

𝑻 𝑺𝒉,𝒘𝛂,𝒌
𝟐  

new integration 

In expressions for parton-hadron amplitudes integration over momentum k 

covers the  whole phase space and it should yield a finite result 

 

However, the integrand has singularities: 

hadron spin 

non-perturbative input 

When       -dependence is taken into account, we arrive at Basic Factorization 

perturbative part 

𝜶 

 parton spin 



        HANDLING THE SINGULARITIES : 

 

A: IR and UV singularities of the perturbative amplitude A(pert 

 
IR singularities  are regulated by  k2  and therefore  

A(pert) is IR stable as long as k2   is not equal to zero .  

UV singularities in Pert QCD are known to be absorbed by 

redefinitions of  the couplings and masses.  
 

 

B: However, after substitution of A(pert)  and T  into the convolution, 

the problem of IR and UV singularities appears once again    
 

 



So, integrability of factorization convolutions leads to theoretical 

restrictions on models for non-perturbative inputs T 

𝑻 ~ 𝒌𝟐
𝟏+𝜼

 at small 𝒌𝟐, with 𝜼  > 0 

 
𝑻~ |𝜶| −𝜿 at large |𝛂|, with 𝛋  > 0 

 

UV stability 

 WAY OUT:  input T should kill both IR and UV divergences in order to  

ensure IR and UV stability of the factorization convolutions  

A(𝑺𝒒, 𝑺𝒉,w,q2) =  
𝒅𝜷

𝜷
 𝒅𝒌𝟐 𝒅𝜶 𝑨 𝒑𝒆𝒓𝒕 (𝑺𝒒,𝒘𝜷,𝒒

𝟐, 𝒌𝟐)
𝒌𝟐⊥
𝒌𝟐𝒌𝟐

𝑻 𝑺𝒉,𝒘𝛂,𝒌
𝟐  

|𝜶| 

IR stability: 

Integration over k2  runs through the point  k2 =0 and there is no reason to 

introduce a new IR cut-off 

Integration over        may yield a diverging result at large    𝜶  



Any model for input T  in the parton-hadron scattering 

amplitudes must satisfy the following constraints: 

 

  

(i) Input T should respect the IR and UV stability restrictions 

 

(ii) It should have non-zero imaginary part in the s-channel in order to apply  

      the Optical theorem 

 

(iii) Model should ensure the step-by-step reductions of Basic  

       Factorization to other forms of factorization.  

       In particular, the input in KT – factorization should have  

       a sharp-peaked form . This ensures  reducing to Collinear Factorization 



𝑻 = 𝒑 +𝒎𝒉   𝑻𝑼  -  𝒑  +𝒎𝒉  𝜸𝟓𝑺  𝑻𝑺               

ASSUMPTION  

Invariant amplitude for 

unpolarized hadron 

Invariant 
amplitude for 

polarized hadron 

Such a representation  obeys  Conformity:  When the hadron is replaced  

by an elementary fermion,          is replaced by  𝝆   𝑻   

First of all, we fix the spinor part of the input  for quark-hadron amplitudes   

Hadron mass Hadron spin 



For gluon-hadron amplitudes , we choose the inputs in the following form :   

𝑻𝝀𝝆 = 2𝒑𝝀𝒑𝝔  − 𝒌𝝀𝒑𝝔  − 𝒑𝒌 𝒈𝝀𝝆  𝑻𝑼 + i 𝒎𝒉𝝐𝝀𝝔𝝉𝝈𝒌𝝉𝑺𝝈 𝑻𝑺 

Hadron spin 

Invariant  

amplitude  

for polarized  

hadron 
 

Invariant unpolarized 
amplitude 

𝑻𝑼,𝑺 = 𝑻𝑼,𝑺 𝒔𝟏, 𝒌
𝟐,𝑴𝟐  

𝒔𝟏= 𝒑 − 𝒌 𝟐 = w𝜶 + 𝒌𝟐+𝑴𝟐 

Invariant energy Quark virtuality 

All such invariant amplitudes are scalars   



In order to fix TU,S we use  RESONANCE MODEL 

MOTIVATION  FOR THE RESONANCE MODEL  

 

After emitting the active quark from the hadron, the set of remaining partons  

is unstable, so it can be described through resonances.  

It satisfies the requirements of integrability 
 

In what follows we skip the subscripts U,S  

T = 𝑹 𝒌𝟐 𝒁𝒏(𝒔𝟏)                 𝒁𝒏 𝒔𝟏 =  
𝟏

𝒔𝟏−𝑴𝒓
𝟐+𝒊 𝚪𝒓

𝒓=𝒏
𝒓=𝟏  

n  =2,3,…  

T = 𝑹 𝒌𝟐
𝟏

𝒔𝟏−𝑴𝟏
𝟐+𝒊𝜞𝟏

−
𝟏

𝒔𝟏−𝑴𝟐
𝟐+𝒊𝜞𝟐

   

𝒔𝟏= 𝒑 − 𝒌 𝟐 = w𝜶 + 𝒌𝟐+𝑴𝟐 



Transition from Basic factorization to KT- factorization 

 

Integration over         and replacement  of          by        𝜶            𝒌𝟐            𝒌⊥
𝟐            

𝜻 ≪  𝒌⊥
𝟐/𝜷  where  𝜻 = 𝝃 𝒌⊥

𝟐/𝜷  

𝝃 ≪ 𝟏  

so we choose  

with  
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𝑻𝑲𝑻 = 𝑹 𝒌⊥
𝟐 𝑻𝑹 + 𝑻𝑩  

𝑻𝑹 = 
𝟏

 𝒌⊥
𝟐/𝜷−𝝁𝟏
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 + 

𝟏
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𝟐/𝜷  −𝝁𝟐𝟐+𝒊𝜞𝟐

  

𝑻𝑩 = 
𝟏

 𝒌⊥
𝟐/𝜷+𝝁𝟏

𝟐+𝒊𝜞𝟏
 + 

𝟏

 𝒌⊥
𝟐/𝜷+𝝁𝟐

𝟐+𝒊𝜞𝟐
  

within the resonance region  

outside the resonance region and therefore it can be regarded as background  

Transition from Basic factorization to KT- factorization leads to       



Applying the Optical theorem, we arrive at the input for parton distributions:   𝝃  

𝑫𝑲𝑻 = 𝑹 𝒌⊥
𝟐 𝑫𝑹 +𝑫𝑩  

𝑫𝑹 = 
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𝟐
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𝟐
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𝟏

 𝒌⊥
𝟐/𝜷+𝝁𝟏

𝟐
𝟐
+𝚪𝟏
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𝟏

 𝒌⊥
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𝟐
  

Resonance 

contribution 

Background 

contribution 



Specifying  the factor R. 

   

The only rigorous  requirement on R: the IR stability requires that  

𝑹 𝒌⊥
𝟐  ≤ 𝒌⊥

𝟐 𝜼
 at small  𝒌⊥

𝟐 

In many papers   R is chosen  

in the exponential/Gaussian form:   

𝑹 𝒌⊥
𝟐  = 𝑹𝟏 𝒌⊥

𝟐 ≡ 𝒆−𝝀𝒌⊥
𝟐
 

𝑹 𝒌⊥
𝟐 = 𝑹𝟐 𝒌⊥

𝟐 ≡ 𝒌⊥
𝟐 𝜼

 𝒆−𝝀𝒌⊥
𝟐
 

Violates  the IR 

stability 

Agrees with the 

 IR stability 
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Minimal Resonance Model  
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CONCLUSIONS        

We obtained the most general kind of QCD factorization.  

We call it Basic Factorization  

Basic Factorization can be reduced first to KT- and then to Collinear 

Factorizations 

 

Imposing the requirements of IR and UV stability on the convolutions in 

Basic Factorization allowed us to impose general restrictions on the non-

perturbative inputs for parton distributions, without specifying the inputs 

 

Motivated by the simple observation that the ensemble of quarks and 

gluons in a hadron becomes unstable after the hadron emits an active 

parton(s) and therefore can be described through resonances, we 

suggested a model for non-perturbative inputs to the factorization 

convolutions 

We call it Resonance Model. We have constructed it for Single-Parton 

Scattering but a generalization on Multi-Parton Scattering is easy to 

obtain.  

This model can universally describe the inputs to parton-hadron 

amplitudes, parton distributions, DIS structure functions, etc., and can 

universally be used for the polarized and unpolarized hadrons 


