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l Nuclear shadowing and ultraperipheral collisions (UPCs) 

l Soft inelastic nuclear shadowing in coherent photoproduction of ρ 
mesons on nuclei in UPCs at the LHC 

l Hard inelastic nuclear shadowing in coherent photoproduction of 
J/𝜓 and 𝜓’ mesons on nuclei in UPCs at the LHC and nuclear gluon 
density gA(x,µ2) at small x 

l Conclusions  

Outline:



Nuclear shadowing 
• Nuclear shadowing = suppression of cross section on a nucleus compared to 
sum of cross sections on individual nucleons: σA < A σN. 

• Observed for beams of nucleons, pions, real and virtual photons, neutrinos, 
other hard probes of large energies (> 1 GeV) 

• Explained by multiple rescattering of the projectile on target nucleons → 
destructive interference among amplitudes for interaction with 1, 2, …nucleons 
→ nucleons in rear of the nucleus “see” smaller (shadowed) flux: σA~A2/3. 

• Classic example: Pion-deuteron scattering. 2 contributions to shadowing:
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Fig. 7. Graphs for pion–deuteron scattering in the Glauber approach.

2.3. Comparison of the Gribov and Glauber results for nuclear shadowing

Originally the nuclear shadowing correction to the pion–deuteron cross section was calculated by Glauber in 1955 [113]
for the energy range E⇡ ⇠ 1 GeV, where the Lorentz dilationwas not important. In the Glauber approach, the pion–deuteron
scattering amplitude receives contributions from the impulse approximation term and from the term corresponding to the
subsequent interactions of the pion with the two nucleons of the target; the both terms are presented in Fig. 7.

The corresponding expression for the total pion–deuteron cross section reads [113]:
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with  D(Er) the deuteron wave function.
TheGribov formula for the nuclear shadowing correction (17) is the generalization of that of Glauber (19) to high energies.

Noticing that in Eq. (17), the |Ek|2 dependence of the deuteron form factor is much faster than that of the diffractive cross
section and assuming that only the elastic intermediate state contributes, Eq. (17) can be written as
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one readily sees that the Gribov (21) and Glauber (19) formulas coincide, if the intermediate state is purely elastic. However,
when inelastic diffraction is important, the Gribov formula leads to larger shadowing.

Despite the similarity of the results obtainedwithin the Gribov andGlauber approaches, the two approaches are based on
very different pictures of high-energy hadron–nucleus scattering. The Glauber approach neglects the Lorentz time dilation
effects related to the hadron production. Indeed, themethod is essentially quantum-mechanical and the creation of particles
in the intermediate states is not possible. As a result, the incoming hadron is formed after each interaction and scatters
successively on the target nucleons, see Fig. 7.

More generally, in the p ! 1 limit, the shadowing correction in theGlauber approach (the right graph in Fig. 7) vanishes.
This can be proven by exact calculations in any quantum field theory which accounts for particle production. Using analytic
properties of the scattering amplitudewith respect to themass squared of the produced state, one can demonstrate the exact
cancellation of the diagrams with the eikonal topology [112,114] (the right graph in Fig. 7 is an example of such diagrams).
The physical reason for this cancellation is that during the finite time it takes for the partonic fluctuation to traverse the
nucleus, the fluctuation does not have enough time (which is of the order of lc / p) to form back into the projectile.

In the Gribov approach, the projectile interacts with the target as a superposition of different configurations that interact
with different strengths, but which evolve very little during the passage through the nucleus. These configurations emerge
behind the nucleus as a distorted – but still a coherent – superposition of configurations, which, when decomposed over

- elastic intermediate state, Glauber 1955
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Fig. 8. The cuts of Fnp that contribute to =mFnp .

the eigenstates of the strong Hamiltonian, contains both the original hadron (elastic scattering) as well as diffractively
excited states (coherent diffraction). The Gribov approach is essentially field-theoretical and the creation of particles in the
intermediate state is properly taken into account, see Figs. 2 and 5. Hence, although the final answer for nuclear shadowing
in the Glauber and Gribov approaches is expressed through topologically different diagrams, it has the structure of the sum
of the eikonal term and the same-sign term corresponding to the contribution of other diffractive states.
Comment. A simple picture of the scattering eigenstates by Feinberg and Pomeranchuk [104] and Good and Walker [115]
provides an s-channel model for the picture of high-energy scattering employed in the Gribov approach. In particular, a
projectile being in different eigenstates interactswith the two nucleons of the deuteron. The contribution of this interactions
to the elastic scattering amplitude at t = 0 is given by the overlapping integral between the final state and projectile wave
functions.Whenexpressed through the cross section of diffractivehN scattering at t = 0withhelp of theMiettinen–Pumplin
relation [116], one finds [117] the same expression as found byGribov, see Eq. (17).Wewill further discuss the Good–Walker
picture later on.

It is worth noting that in the Gribov–Glauber approximation, the nucleus is treated as a dilute system. Namely, it is
assumed that the characteristic impact parameters for the projectile–nucleon interaction are much smaller than the typical
transverse distance between the interacting nucleon and its neighbor. The corrections to this approximation are difficult
to estimate in a model-independent way, although they may become important at the LHC energies, where the typical
impact parameters in the pp interaction are as large as 1.5 fm, which is close to the average distance to the nearest neighbor.
However, phenomenological analyses indicate that the Gribov–Glauber approximation works well for fixed-target energies
in nucleon–nucleus scattering at the beam energies EN  400 GeV, for a recent analysis, see Ref. [118]. Since in the energy
range that we discuss in the present review the impact parameters in � ⇤p diffraction do not exceed those in NN scattering
at fixed-target energies, we will neglect these effects in our analysis.

2.4. The AGK cutting rules and nuclear shadowing

In the Gribov approach, the nuclear shadowing correction to the total pion–deuteron cross section is given by the
diffractive cut of the graph, where the fast pion exchanges two Pomeronswith the target, see Fig. 5. The resulting shadowing
correction is negative and given in terms of the pion–nucleon diffractive cross section. These two features of theGribov result
can be understood using the Abramovsky–Gribov–Kancheli (AGK) cutting rules in the Reggeon field theory [119].

Let us consider the part of the pion–deuteron scattering amplitude that gives rise to the shadowing correction by
assuming that the high-energy pion interacts with the target nucleons by the Pomeron exchanges. In the symbolic form
(omitting the integration over the transverse momentum of exchanged Pomerons in the loop which does not change the
AGK rules), the amplitude reads:

Fnp = �iN(iD1)N(iD2), (24)
where D1,2 denote the complex Reggeon amplitudes; N is the real-valued particle-Reggeon vertex function which is an
operator in the space of diffractively produced particles (see below). The imaginary part of Fnp is then readily found:

=mFnp = �2N2 (=mD1=mD2 � <eD1<eD2) , (25)
where N2 = P

nhi|N|nihn|N|f id⌧n (in this expression, |ni denotes the diffractively produced state; d⌧n is its phase volume).
The additional factor of two originates from the fact that the deuteron consists of two nucleons.

Alternatively, the imaginary part of Fnp can be evaluated by summing all possible cuts of the diagram corresponding
to Fnp, see Fig. 8. Graph a corresponds to the diffractive final state in the ⇡N ! XN reaction, when the pion diffractively
dissociates into the hadronic states X . Hence, this cut is called diffractive. Graph b corresponds to the single multiplicity of
the final state Y in the ⇡D ! Y reaction; graph c corresponds to the double multiplicity in the ⇡D ! Y reaction.

Denoting the results of the cutting of graphs a, b and c in Fig. 8 as=mFa
np,=mFb

np and=mFc
np, respectively, a direct evaluation

gives [119]:
=mFa

np = 2N2 (=mD1=mD2 + <eD1<eD2) = 2N2|D1D⇤
2|,

=mFb
np = �8N2 =mD1=mD2,

=mFc
np = 4N2 =mD1=mD2. (26)

- inelastic intermediate state, Gribov 1969
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Ultraperipheral collisions (UPCs)
• Ions can interact at large impact parameters b > RA+RB =10-20 fm  → 
ultraperipheral collisions (UPCs) → strong interaction suppressed → 
interaction via quasi-real photons, Fermi (1924), von Weizsäcker; Williams (1934)

- For studied vector meson production, UPCs correspond to empty 
detector with only two lepton (pion) tracks  

- Nuclear coherence by veto on neutron production by Zero 
Degree Calorimeters (ZDCs) and selection on events with small 
(pt < 200 MeV/c) momentum transfer to the nucleus
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Figure 2: Three types of processes that can be used to study the gluon distributions in nuclei at small x in
UPCs: (a) inclusive photoproduction of two jets with large transverse momenta gives access to the usual gluon
PDF; (b) diffractive productions of two jets gives access to the diffractive gluon PDF; (c) exclusive coherent
photoproduction of heavy vector mesons probes the generalized gluon distributions (the impact-parameter-
dependent gluon PDF).

predicted using the leading twist theory of nuclear shadowing [17]. An example of it is presented in
Fig. 3 (left) where we plot the ratio of the gluon distribution in 208Pb over that in the free proton,
gA(x,Q2

0)/[AgN(x,Q
2
0)], as a function of x at Q2

0 = 4 GeV2 (the shaded band labeled FGS10). The
band corresponds to an intrinsic theoretical uncertainty of our approach, see details in [17]. Also, for
comparison, we show the results of the extraction of gA(x,Q2

0)/[AgN(x,Q
2
0)] using the global QCD fits:

EPS09 [14] and HKN07 [13].
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Figure 3: (Left) Predictions for ratio of the gluon distribution in 208Pb to that in the free proton,
gA(x,Q2

0)/[AgN (x,Q2
0)]. (Right) The ratio of the gluon impact-parameter-dependent distribution in 208Pb to

the gluon distribution in the free proton, gA(x,Q2
0, b)/[ATA(b)gN (x,Q2

0)], as a function of the impact parameter
b; TA(b) is the nucleon density.

In UPCs at the LHC, one can directly access the gluon distribution in nuclei through the process of
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Photon flux: Photoproduction cross section = J/𝜓 rapidity

d�AA!AAJ/ (y)

dy
= N�/A(y)��A!AJ/ (y) +N�/A(�y)��A!AJ/ (�y)

• Coherent photoproduction of vector mesons in UPCs:                                        

N�/Z(k) =
2Z2↵em

⇡
[⇣K0(⇣)K1(⇣)�

⇣2

2
(K2

1 (⇣)�K2
0 (⇣))]

⇣ = k(2RA/�L)

• Photon flux from QED: 
- high intensity ~ Z2 
- large photon energies                                   

UPCs = 𝛾p and 𝛾A interactions at unprecedentedly large energies,        
Baltz et al., The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1

y = ln[W 2/(2�LmNMV )]
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Coherent photoproduction of ρ on nuclei  
• Measured with fixed targets (SLAC, W < 6 GeV), in Au-Au UPCs at RHIC   
(W < 12 ГэВ ), and Pb-Pb UPCs at the LHC@2.76 TeV (W=46 GeV). 

• For W < 10 GeV, explained using the vector meson dominance (VMD) model 
for 𝛾→ρ transition and Glauber model for shadowing in ρA scattering: 
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Figure 1: Comparison of the calculated cross sections for ⇢ photoproduction in the gold-
gold UPC with the STAR experimental results.
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• This approach fails to describe large-W RHIC 
(STAR Coll.), Adler, et al, Phys. Rev. Lett. 89 (2002) 272302; Abelev 
et al., Phys. Rev. C 77 (2008) 034910; Agakishiev, et al., Phys. Rev. C 85 
(2012) 014910  →                                                     
and LHC data, Adam et al (ALICE), JHEP 1509 (2015) 095   

• What is missing? Inelastic nuclear shadowing. 

�VMD
�A!⇢A =

✓
e

f⇢

◆2 Z
d2b

���1� e�
1
2�⇢NTA(b)

���
2

TA(b) =

Z
dz⇢A(b, z)

fρ from e+e- decay σρN from constituent 
quark model/data:

Optical density:

Frankfurt, Strikman, Zhalov, 2002



6

Modified vector meson dominance (mVMD) model
• At large beam energies Е𝛾, the photon can be viewed as superposition of 
long-lived (lc ~ E𝛾) fluctuations interacting with hadrons with different cross 
sections, Gribov, Ioffe, Pomeranchuk 1965; Good, Walker, 1960 

• Convenient to realize introducing the probability distribution P(σ), 

L. Frankfurt et al. / Physics Letters B 752 (2016) 51–58 55

used for predictions and modeling of vector meson photoproduc-
tion on nuclear targets. In order to agree with the 2006 H1 data, 
the results of the VMD-DL94 and the Starlight parametrization 
should be decreased by the factor of approximately 0.7, which is 
much larger than what could be allowed by a variation of fρ . From 
the analysis presented above we can conclude the following: the 
assumption of the ρ meson dominance in the photon wave func-
tion has to be modified in order to agree to the whole set of data 
including the results of 2006 H1 measurements.

To this end, one can write the ρ meson photoproduction ampli-
tude as the dispersion integral over the masses of the intermediate 
states generated in the γ → V transitions, which will involve the 
on-mass-shell f V , the ρN cross section and the V N → ρN am-
plitude (here V denotes ρ-meson-like fluctuations of the photon 
with the invariant mass M , see our discussion in the Introduction). 
It is possible to demonstrate that inclusion of the contribution 
of the higher states can only weakly change fρ , but it can no-
ticeably reduce the cross section of the ρ meson production due 
non-diagonal transitions among different hadronic components of 
the photon and the ρ meson in the GVMD approach [9,10,49]. On 
the other hand, within the VMD approach this can be modeled by 
defining the effective ρ-nucleon cross section σ̂ρN :

σ̂ρN(Wγ p) = fρ
e

√

16π
dσ exp

γ p→ρp(t = 0)

dt
. (9)

We refer to this model as the modified vector meson dominance 
(mVMD) model; its prediction is shown by the solid red curve in 
Fig. 3. Note that a similar effect is also present in the CDM.

The Gribov–Glauber model takes into account both elastic and 
inelastic diffraction; the latter leads to the additional—as compared 
to the Glauber model—inelastic nuclear shadowing contribution 
(the Gribov shadowing correction) [20]. The standard method to 
include this effect is given by the formalism of cross section fluc-
tuations, which conveniently and successfully describes diffractive 
dissociation of protons, neutrons and pions on hydrogen and nu-
clei and inelastic nuclear shadowing in hadron–nucleus total cross 
sections [50].

Applying this formalism to the ρ meson–nucleus scattering, we 
obtain:

σ mVMD-GGM
γ A→ρ A =

(
e
fρ

)2 ∫
d2b⃗

∣∣∣∣

∫
dσ P (σ )

(
1 − e− σ

2 T A(b)
)∣∣∣∣

2

,

(10)

which generalizes Eq. (6).
The interpretation of Eq. (10) is the following: the photon fluc-

tuates into the ρ meson, which interacts with the target as a 
coherent superposition of eigenstates of the scattering operator, 
whose eigenvalues are the scattering cross sections σ ; the weight 
of a given fluctuation is given by the distribution P (σ ). Each 
state interacts with nucleons of the target nucleus according to 
the Gribov–Glauber model. The result is summed over all possible 
fluctuations, which corresponds to averaging with the distribution 
P (σ ) at the amplitude level.

Based on the similarity between the pion and ρ meson wave 
functions suggested by the additive quark model and our discus-
sion above, it is natural to assume that P (σ ) for the ρN interaction 
should be similar to the pion Pπ (σ ), which we additionally mul-
tiply by the factor of 1/(1 + (σ /σ0)

2) to take into account the 
enhanced contribution of small σ in the ρN interaction (we ex-
plained above that the contribution of small-σ fluctuations to the 
γ N → ρN amplitude is expected to be enhanced compared to the 
π N → π N one):

P (σ ) = C
1

1 + (σ /σ0)2 e−(σ /σ0−1)2/%2
. (11)

The parameterization of Eq. (11) satisfies the basic QCD constraint 
of P (σ = 0) ̸= 0 and also P (σ → ∞) → 0. The free parameters C , 
σ0 and % are found from the following constraints:

∫
dσ P (σ ) = 1 ,

∫
dσ P (σ )σ = ⟨σ ⟩ ,

∫
dσ P (σ )σ 2 = ⟨σ ⟩2(1 + ωσ ) , (12)

where ⟨σ ⟩ = σ̂ρN in the mVMD model, see Eq. (9).
The quantity ωσ parametrizes the dispersion of P (σ ) around its 

mean value ⟨σ ⟩, i.e., it characterizes the strength of cross section 
fluctuations. It can be determined using experimental information 
on the photon diffraction dissociation, in particular, the factor-
ization of the photon and the pion diffraction dissociation cross 
sections scaled by the respective total cross sections. In detail, the 
measurement [51] of inclusive diffraction dissociation of photons 
on hydrogen, γ p → Xp, in the range of 75 < Eγ < 148 GeV and 
M2

X/s < 0.1 (M X denotes the produced diffractive mass) and the 
control measurement of inclusive diffraction dissociation of pions 
in the π p → Xp reaction at Eπ = 100 GeV showed that the re-
spective M2

X distributions scaled by the total cross sections are 
very similar in the photon and pion cases. For the cross sections 
integrated over M2

X , this observation means that:

dσγ p→Xp(t = 0)/dt

σγ p
≈ dσπ p→Xp(t = 0)/dt

σπ p
= ωπ

σ

16π
σπ N , (13)

where in the last equation we expressed the cross section of pion 
diffraction dissociation in terms of ωπ

σ characterizing the Pπ (σ )
distribution and the total pion–nucleon cross section σπ N .

On the other hand, using the formalism of cross section fluctu-
ations for the ρ-nucleon scattering and the mVMD model for the 
γ –ρ transition, we obtain for the cross section of photon diffrac-
tion dissociation [compare to Eq. (5)]:

dσγ p→Xp(t = 0)

dt
= 1

16π

(
e
fρ

)2 [∫
dσ P (σ )σ 2 − (σ̂ρN )2

]

= ωσ

16π

(
e
fρ

)2

(σ̂ρN)2 , (14)

where the diffraction dissociation final state X by construction 
does not contain ρ . The inelastic final state X is selected exper-
imentally by analyzing the differential cross section as a function 
of the produced diffractive mass M X and corresponds to the val-
ues of M X beyond the ρ peak, M2

X > 1.5–2 GeV2 [51]. Substituting 
Eq. (14) in Eq. (13) we obtain the desired constraint on ωσ :

ωσ =
f 2
ρ

e2

σπ Nσγ p

σ̂ 2
ρN

ωπ
σ , (15)

where the total photon–proton cross section σγ p is taken from the 
fit to data [4].

For the pion projectile, we use the constituent quark counting 
rule for the ratio of the nucleon–nucleon and the pion–nucleon 
total cross sections and obtain:

ωπ
σ (s) = 3

2
ωN

σ (s) . (16)

Here we effectively use validity of the limiting fragmentation 
which is well established experimentally.

The pattern of cross section fluctuations for the nucleon projec-
tile has the following dependence of the invariant collision energy 

Blattel et al, 1993
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Fig. 1. The γ A → ρ A cross section as a function of Wγ p . The VMD-GM (red dashed 
curve) and VMD-IA (blue dot-dashed line) predictions for a 208Pb target based on 
the DL94 parametrization of the ρN cross section are compared to the experimental 
values extracted from the STAR and ALICE UPC measurements.

the IA calculation, but it still overestimates the experimental cross 
sections by the factor of 1.5–2. Besides, the energy dependence 
is different: while the calculated cross sections slowly grow with 
energy, the experimental values slightly decrease or stay almost 
constant. Note that the calculated values of the γ Au → ρAu cross 
section are smaller than those for the lead target by approximately 
5% for all energies. Hence, we neglect this difference throughout 
our paper and perform our calculations for lead keeping in mind 
the 5% reduction of the nuclear cross section when we compare 
our calculations with the STAR data.

To check the accuracy of the Glauber model calculations in 
Eq. (6) in combination with the DL94 pion–nucleon cross section, 
we calculated the hadron–nucleus total and inelastic cross sections 
for the neutron and pion projectiles in the Glauber approach:

σ tot
h A = 2

∫
d2b⃗

[
1 − e− σhN

2 T A(b)
]

,

σ in
h A =

∫
d2b⃗

[
1 − e−σhN T A(b)

]
. (8)

The neutron–nucleon cross section σnN is estimated using the ad-
ditive quark model counting rule relation [3] σnN = 3/2σπ N , where 
the pion–nucleon cross section is given by Eq. (7). The results of 
our calculations are compared to the data [24,45–47] in Fig. 2. One 
can see from the figure that the calculations agree very well with 
the measurements. This means that the reasons of the disagree-
ment of similar calculations of the γ A → ρ A cross section with 
the STAR and ALICE data are in specifics of the light vector meson 
photoproduction process.

This conclusion is confirmed by our observation that the latest 
2006 H1 data on the γ p → ρp cross section [19] (we extrapolated 
the H1 cross sections given at −t = 0.01 GeV2 to −t = 0 assuming 
the eBt dependence with the value of the slope B reported by H1) 
disagrees with the normalization of the forward cross section cal-
culated using the DL94 model by the factor of 0.84. This is seen in 
Fig. 3, where the forward γ p → ρp cross section evaluated using 
Eqs. (5) and (7) (the green dot-dashed curve labeled “VMD-DL94”) 
is compared to the whole bulk of the data. Also, for comparison, 
we show the parametrization of the forward γ p → ρp cross sec-
tion from the Starlight Monte Carlo generator [48], which is widely 

Fig. 2. Upper and middle: Comparison of the total and inelastic neutron–nucleus 
cross sections calculated in the Glauber model with the available data. Bottom: The 
total pion–nucleus cross section as a function of √sπ N : the Glauber model calcula-
tions with the DL94 model for σπ N are compared to the available data.

Fig. 3. Comparison of the experimentally measured forward cross section of coher-
ent ρ photoproduction on the proton [19,38–43] with the VDM-DL94 model and 
the Starlight parametrization. The red solid line shows the modified VMD (mVMD) 
parametrization (see text for details). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

→  from  

                → from measured 𝛾 
diffract. dissociation into large 
masses, Chapin 1985

• Shape like for pion, Blattel et al, 1993 + small-σ 
enhancement to take into account smaller 
size of ρ in 𝛾p→ρp than in σ𝜋N  →

L. Frankfurt et al. / Physics Letters B 752 (2016) 51–58 55

used for predictions and modeling of vector meson photoproduc-
tion on nuclear targets. In order to agree with the 2006 H1 data, 
the results of the VMD-DL94 and the Starlight parametrization 
should be decreased by the factor of approximately 0.7, which is 
much larger than what could be allowed by a variation of fρ . From 
the analysis presented above we can conclude the following: the 
assumption of the ρ meson dominance in the photon wave func-
tion has to be modified in order to agree to the whole set of data 
including the results of 2006 H1 measurements.

To this end, one can write the ρ meson photoproduction ampli-
tude as the dispersion integral over the masses of the intermediate 
states generated in the γ → V transitions, which will involve the 
on-mass-shell f V , the ρN cross section and the V N → ρN am-
plitude (here V denotes ρ-meson-like fluctuations of the photon 
with the invariant mass M , see our discussion in the Introduction). 
It is possible to demonstrate that inclusion of the contribution 
of the higher states can only weakly change fρ , but it can no-
ticeably reduce the cross section of the ρ meson production due 
non-diagonal transitions among different hadronic components of 
the photon and the ρ meson in the GVMD approach [9,10,49]. On 
the other hand, within the VMD approach this can be modeled by 
defining the effective ρ-nucleon cross section σ̂ρN :

σ̂ρN(Wγ p) = fρ
e

√

16π
dσ exp

γ p→ρp(t = 0)

dt
. (9)

We refer to this model as the modified vector meson dominance 
(mVMD) model; its prediction is shown by the solid red curve in 
Fig. 3. Note that a similar effect is also present in the CDM.

The Gribov–Glauber model takes into account both elastic and 
inelastic diffraction; the latter leads to the additional—as compared 
to the Glauber model—inelastic nuclear shadowing contribution 
(the Gribov shadowing correction) [20]. The standard method to 
include this effect is given by the formalism of cross section fluc-
tuations, which conveniently and successfully describes diffractive 
dissociation of protons, neutrons and pions on hydrogen and nu-
clei and inelastic nuclear shadowing in hadron–nucleus total cross 
sections [50].

Applying this formalism to the ρ meson–nucleus scattering, we 
obtain:

σ mVMD-GGM
γ A→ρ A =

(
e
fρ

)2 ∫
d2b⃗

∣∣∣∣

∫
dσ P (σ )

(
1 − e− σ

2 T A(b)
)∣∣∣∣

2

,

(10)

which generalizes Eq. (6).
The interpretation of Eq. (10) is the following: the photon fluc-

tuates into the ρ meson, which interacts with the target as a 
coherent superposition of eigenstates of the scattering operator, 
whose eigenvalues are the scattering cross sections σ ; the weight 
of a given fluctuation is given by the distribution P (σ ). Each 
state interacts with nucleons of the target nucleus according to 
the Gribov–Glauber model. The result is summed over all possible 
fluctuations, which corresponds to averaging with the distribution 
P (σ ) at the amplitude level.

Based on the similarity between the pion and ρ meson wave 
functions suggested by the additive quark model and our discus-
sion above, it is natural to assume that P (σ ) for the ρN interaction 
should be similar to the pion Pπ (σ ), which we additionally mul-
tiply by the factor of 1/(1 + (σ /σ0)

2) to take into account the 
enhanced contribution of small σ in the ρN interaction (we ex-
plained above that the contribution of small-σ fluctuations to the 
γ N → ρN amplitude is expected to be enhanced compared to the 
π N → π N one):

P (σ ) = C
1

1 + (σ /σ0)2 e−(σ /σ0−1)2/%2
. (11)

The parameterization of Eq. (11) satisfies the basic QCD constraint 
of P (σ = 0) ̸= 0 and also P (σ → ∞) → 0. The free parameters C , 
σ0 and % are found from the following constraints:

∫
dσ P (σ ) = 1 ,

∫
dσ P (σ )σ = ⟨σ ⟩ ,

∫
dσ P (σ )σ 2 = ⟨σ ⟩2(1 + ωσ ) , (12)

where ⟨σ ⟩ = σ̂ρN in the mVMD model, see Eq. (9).
The quantity ωσ parametrizes the dispersion of P (σ ) around its 

mean value ⟨σ ⟩, i.e., it characterizes the strength of cross section 
fluctuations. It can be determined using experimental information 
on the photon diffraction dissociation, in particular, the factor-
ization of the photon and the pion diffraction dissociation cross 
sections scaled by the respective total cross sections. In detail, the 
measurement [51] of inclusive diffraction dissociation of photons 
on hydrogen, γ p → Xp, in the range of 75 < Eγ < 148 GeV and 
M2

X/s < 0.1 (M X denotes the produced diffractive mass) and the 
control measurement of inclusive diffraction dissociation of pions 
in the π p → Xp reaction at Eπ = 100 GeV showed that the re-
spective M2

X distributions scaled by the total cross sections are 
very similar in the photon and pion cases. For the cross sections 
integrated over M2

X , this observation means that:

dσγ p→Xp(t = 0)/dt

σγ p
≈ dσπ p→Xp(t = 0)/dt

σπ p
= ωπ

σ

16π
σπ N , (13)

where in the last equation we expressed the cross section of pion 
diffraction dissociation in terms of ωπ

σ characterizing the Pπ (σ )
distribution and the total pion–nucleon cross section σπ N .

On the other hand, using the formalism of cross section fluctu-
ations for the ρ-nucleon scattering and the mVMD model for the 
γ –ρ transition, we obtain for the cross section of photon diffrac-
tion dissociation [compare to Eq. (5)]:

dσγ p→Xp(t = 0)

dt
= 1

16π

(
e
fρ

)2 [∫
dσ P (σ )σ 2 − (σ̂ρN )2

]

= ωσ

16π

(
e
fρ

)2

(σ̂ρN)2 , (14)

where the diffraction dissociation final state X by construction 
does not contain ρ . The inelastic final state X is selected exper-
imentally by analyzing the differential cross section as a function 
of the produced diffractive mass M X and corresponds to the val-
ues of M X beyond the ρ peak, M2

X > 1.5–2 GeV2 [51]. Substituting 
Eq. (14) in Eq. (13) we obtain the desired constraint on ωσ :

ωσ =
f 2
ρ

e2

σπ Nσγ p

σ̂ 2
ρN

ωπ
σ , (15)

where the total photon–proton cross section σγ p is taken from the 
fit to data [4].

For the pion projectile, we use the constituent quark counting 
rule for the ratio of the nucleon–nucleon and the pion–nucleon 
total cross sections and obtain:

ωπ
σ (s) = 3

2
ωN

σ (s) . (16)

Here we effectively use validity of the limiting fragmentation 
which is well established experimentally.

The pattern of cross section fluctuations for the nucleon projec-
tile has the following dependence of the invariant collision energy 

d�(�p ! ⇢p)/dt
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Photoproduction of ρ on Pb in mVMD+Gribov-
Glauber model 

• With cross section fluctuations: 
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Fig. 4. The σγ A→ρ A cross section as a function of Wγ p . The theoretical predictions 
using the mVMD model for the γ p → ρp cross section and the Gribov–Glauber 
model with cross section fluctuations for the γ A → ρ A amplitude are compared to 
the STAR (circle) and ALICE (triangle) data. The shaded area reflects the theoretical 
uncertainty associated with the parameter β characterizing the strength of cross 
section fluctuations (see text for details).

√
s: the cross section fluctuations reach a broad maximum for 

24 <
√

s < 200 GeV, are most likely small for 
√

s < 24 GeV and 
gradually decrease for 

√
s > 200 GeV toward the Tevatron and LHC 

energies. Therefore, we use the following parametrization for the 
parameter ωN

σ describing the dispersion of the fluctuations:

ωN
σ (s) =

⎧
⎪⎪⎨

⎪⎪⎩

β
√

s/24 ,
√

s < 24GeV ,

β , 24 <
√

s < 200 GeV ,

β − 0.15 ln(
√

s/200) + 0.03(ln(
√

s/200))2 ,√
s > 200 GeV ,

(17)

where the parameter β ≈ 0.25–0.35 was determined from the 
analysis of pp and p̄p data [28].

It is known [22] from studies of corrections to the Glauber 
model for total proton–nucleus cross sections that suppression due 
to the inelastic shadowing is almost compensated by the effect of 
short-range correlations (SRC) in the wave function of the target 
nucleus. We included the effect of SRC by the following replace-
ment [52]:

T A(b) → T A(b) + ξc
σρN

2

∫
dzρ2

A(b, z) , (18)

where ξc = 0.74 fm is the correlation length.
Our predictions for the γ A → ρ A cross section as a function 

of Wγ p are presented in Fig. 4. The shaded area spanned by two 
red curves presents the results of the calculation using the mVMD 
model for the γ p → ρp cross section and the Gribov–Glauber 
model with the effect of cross section fluctuations, see Eq. (10). 
The shaded area shows the uncertainty of our calculations due to 
the variation of the fluctuation strength ωσ by changing β in the 
range 0.25 ≤ β ≤ 0.35. Our predictions are compared to the STAR 
(circle) and ALICE (triangle) data. One can clearly see from the fig-
ure that the inclusion of the inelastic nuclear shadowing enables 
us to explain the discrepancy between the UPC data on coherent ρ
photoproduction on nuclei at large Wγ p and the theoretical de-
scription of this process in the framework of the VMD-GM with 
the DL94 parametrization of the ρN cross section.

4. Discussion

The effect of the inelastic shadowing correction, which we 
demonstrate in these calculations, can be checked in the UPC mea-
surements at the LHC. The inelastic nuclear shadowing changes the 
rapidity distribution of coherent ρ photoproduction in ion UPCs. 
Fig. 5 presents the results of our calculation of dσPbPb→ρPbPb/dy, 

Fig. 5. The rapidity distribution of coherent ρ photoproduction in Pb–Pb UPCs at √
sNN = 2.76 TeV. Theoretical predictions of the mVDM-GGM (red solid curves with 

the shaded area showing the uncertainty due to the variation of the fluctuation 
strength), the mVMD-GM (blue dashed curve) and the VMD-GM (green dot-dashed 
curve) are compared to the ALICE data (see text for details).

see Eq. (1), as a function of the ρ meson rapidity y in Pb–Pb UPCs 
at the LHC at √sNN = 2.76 TeV. The shaded area spanned by two 
red curves corresponds to the combination of the mVMD model 
and the Gribov–Glauber model for nuclear shadowing with cross 
section fluctuations (the shaded area shows the uncertainty of the 
calculations related to the variation of the fluctuation strength due 
to the change of β in the range 0.25 ≤ β ≤ 0.35); the blue dashed 
curve is the result of the calculation in mVMD-GM, i.e. without 
cross section fluctuations; the green dot-dashed curve is the result 
of the VMD-DL94 model combined with the Glauber model. The 
shape of the rapidity distribution predicted by the mVMD-GGM 
calculations is due to specifics of symmetric UPCs and the inter-
play between the energy dependence of the inelastic shadowing 
correction and the photon flux.

The predicted shape of dσPbPb→ρPbPb/dy is different from the 
almost flat dσPbPb→ρPbPb/dy distribution obtained in the VDM-GM 
and Starlight approaches and is also in stark contrast with the 
calculations [53,54] in the color dipole model approach predict-
ing a bell-like shape for dσPbPb→ρPbPb/dy with the maximum at 
y = 0 and small values of dσPbPb→ρPbPb/dy at y ≈ −4.5 corre-
sponding to Wγ p ≈ 5–10 GeV, i.e., to the energy range of the 
STAR measurements. From Fig. 4 it is seen that the experimen-
tal photoproduction cross section is almost constant in the energy 
range spanning the STAR and ALICE energies, σγ Pb→ρPb ≈ 2 mb. In 
UPCs at y = 0, the contributions from both colliding nuclei serv-
ing as a target are equal, while at |y| = 4.5 the contribution of 
the low energy photon dominates. The photon fluxes are calcu-
lated in all studies similarly and with good accuracy, Nγ /Pb(y =
0) = 108 and Nγ /Pb(y = −4.5) = 250. Then one easily obtains that 
σPbPb→PbPbρ(|y| = 4.5) ≈ 500 mb > σPbPb→PbPbρ(y = 0) ≈ 430 mb. 
These estimates confirm that the two-bumped shape of the rapid-
ity distribution seems to be reasonable.

The good agreement with the ALICE result allows us to predict 
the value of the cross section of coherent ρ photoproduction in 
Pb–Pb UPCs at √sNN = 5.02 TeV in Run 2 at the LHC:

dσ (y = 0)

dy
= 560 ± 25 mb . (19)

Examining the calculations of elastic photoproduction of ρ
mesons on nuclei in the dipole model framework [53,54], one 
notes that some of them describe the STAR and ALICE data while 
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the STAR (circle) and ALICE (triangle) data. The shaded area reflects the theoretical 
uncertainty associated with the parameter β characterizing the strength of cross 
section fluctuations (see text for details).
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s: the cross section fluctuations reach a broad maximum for 

24 <
√

s < 200 GeV, are most likely small for 
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s < 24 GeV and 
gradually decrease for 

√
s > 200 GeV toward the Tevatron and LHC 

energies. Therefore, we use the following parametrization for the 
parameter ωN

σ describing the dispersion of the fluctuations:

ωN
σ (s) =

⎧
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(17)

where the parameter β ≈ 0.25–0.35 was determined from the 
analysis of pp and p̄p data [28].

It is known [22] from studies of corrections to the Glauber 
model for total proton–nucleus cross sections that suppression due 
to the inelastic shadowing is almost compensated by the effect of 
short-range correlations (SRC) in the wave function of the target 
nucleus. We included the effect of SRC by the following replace-
ment [52]:

T A(b) → T A(b) + ξc
σρN

2

∫
dzρ2

A(b, z) , (18)

where ξc = 0.74 fm is the correlation length.
Our predictions for the γ A → ρ A cross section as a function 

of Wγ p are presented in Fig. 4. The shaded area spanned by two 
red curves presents the results of the calculation using the mVMD 
model for the γ p → ρp cross section and the Gribov–Glauber 
model with the effect of cross section fluctuations, see Eq. (10). 
The shaded area shows the uncertainty of our calculations due to 
the variation of the fluctuation strength ωσ by changing β in the 
range 0.25 ≤ β ≤ 0.35. Our predictions are compared to the STAR 
(circle) and ALICE (triangle) data. One can clearly see from the fig-
ure that the inclusion of the inelastic nuclear shadowing enables 
us to explain the discrepancy between the UPC data on coherent ρ
photoproduction on nuclei at large Wγ p and the theoretical de-
scription of this process in the framework of the VMD-GM with 
the DL94 parametrization of the ρN cross section.

4. Discussion

The effect of the inelastic shadowing correction, which we 
demonstrate in these calculations, can be checked in the UPC mea-
surements at the LHC. The inelastic nuclear shadowing changes the 
rapidity distribution of coherent ρ photoproduction in ion UPCs. 
Fig. 5 presents the results of our calculation of dσPbPb→ρPbPb/dy, 
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see Eq. (1), as a function of the ρ meson rapidity y in Pb–Pb UPCs 
at the LHC at √sNN = 2.76 TeV. The shaded area spanned by two 
red curves corresponds to the combination of the mVMD model 
and the Gribov–Glauber model for nuclear shadowing with cross 
section fluctuations (the shaded area shows the uncertainty of the 
calculations related to the variation of the fluctuation strength due 
to the change of β in the range 0.25 ≤ β ≤ 0.35); the blue dashed 
curve is the result of the calculation in mVMD-GM, i.e. without 
cross section fluctuations; the green dot-dashed curve is the result 
of the VMD-DL94 model combined with the Glauber model. The 
shape of the rapidity distribution predicted by the mVMD-GGM 
calculations is due to specifics of symmetric UPCs and the inter-
play between the energy dependence of the inelastic shadowing 
correction and the photon flux.

The predicted shape of dσPbPb→ρPbPb/dy is different from the 
almost flat dσPbPb→ρPbPb/dy distribution obtained in the VDM-GM 
and Starlight approaches and is also in stark contrast with the 
calculations [53,54] in the color dipole model approach predict-
ing a bell-like shape for dσPbPb→ρPbPb/dy with the maximum at 
y = 0 and small values of dσPbPb→ρPbPb/dy at y ≈ −4.5 corre-
sponding to Wγ p ≈ 5–10 GeV, i.e., to the energy range of the 
STAR measurements. From Fig. 4 it is seen that the experimen-
tal photoproduction cross section is almost constant in the energy 
range spanning the STAR and ALICE energies, σγ Pb→ρPb ≈ 2 mb. In 
UPCs at y = 0, the contributions from both colliding nuclei serv-
ing as a target are equal, while at |y| = 4.5 the contribution of 
the low energy photon dominates. The photon fluxes are calcu-
lated in all studies similarly and with good accuracy, Nγ /Pb(y =
0) = 108 and Nγ /Pb(y = −4.5) = 250. Then one easily obtains that 
σPbPb→PbPbρ(|y| = 4.5) ≈ 500 mb > σPbPb→PbPbρ(y = 0) ≈ 430 mb. 
These estimates confirm that the two-bumped shape of the rapid-
ity distribution seems to be reasonable.

The good agreement with the ALICE result allows us to predict 
the value of the cross section of coherent ρ photoproduction in 
Pb–Pb UPCs at √sNN = 5.02 TeV in Run 2 at the LHC:

dσ (y = 0)

dy
= 560 ± 25 mb . (19)

Examining the calculations of elastic photoproduction of ρ
mesons on nuclei in the dipole model framework [53,54], one 
notes that some of them describe the STAR and ALICE data while 
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used for predictions and modeling of vector meson photoproduc-
tion on nuclear targets. In order to agree with the 2006 H1 data, 
the results of the VMD-DL94 and the Starlight parametrization 
should be decreased by the factor of approximately 0.7, which is 
much larger than what could be allowed by a variation of fρ . From 
the analysis presented above we can conclude the following: the 
assumption of the ρ meson dominance in the photon wave func-
tion has to be modified in order to agree to the whole set of data 
including the results of 2006 H1 measurements.

To this end, one can write the ρ meson photoproduction ampli-
tude as the dispersion integral over the masses of the intermediate 
states generated in the γ → V transitions, which will involve the 
on-mass-shell f V , the ρN cross section and the V N → ρN am-
plitude (here V denotes ρ-meson-like fluctuations of the photon 
with the invariant mass M , see our discussion in the Introduction). 
It is possible to demonstrate that inclusion of the contribution 
of the higher states can only weakly change fρ , but it can no-
ticeably reduce the cross section of the ρ meson production due 
non-diagonal transitions among different hadronic components of 
the photon and the ρ meson in the GVMD approach [9,10,49]. On 
the other hand, within the VMD approach this can be modeled by 
defining the effective ρ-nucleon cross section σ̂ρN :

σ̂ρN(Wγ p) = fρ
e

√

16π
dσ exp

γ p→ρp(t = 0)

dt
. (9)

We refer to this model as the modified vector meson dominance 
(mVMD) model; its prediction is shown by the solid red curve in 
Fig. 3. Note that a similar effect is also present in the CDM.

The Gribov–Glauber model takes into account both elastic and 
inelastic diffraction; the latter leads to the additional—as compared 
to the Glauber model—inelastic nuclear shadowing contribution 
(the Gribov shadowing correction) [20]. The standard method to 
include this effect is given by the formalism of cross section fluc-
tuations, which conveniently and successfully describes diffractive 
dissociation of protons, neutrons and pions on hydrogen and nu-
clei and inelastic nuclear shadowing in hadron–nucleus total cross 
sections [50].

Applying this formalism to the ρ meson–nucleus scattering, we 
obtain:

σ mVMD-GGM
γ A→ρ A =

(
e
fρ

)2 ∫
d2b⃗

∣∣∣∣

∫
dσ P (σ )

(
1 − e− σ

2 T A(b)
)∣∣∣∣

2

,

(10)

which generalizes Eq. (6).
The interpretation of Eq. (10) is the following: the photon fluc-

tuates into the ρ meson, which interacts with the target as a 
coherent superposition of eigenstates of the scattering operator, 
whose eigenvalues are the scattering cross sections σ ; the weight 
of a given fluctuation is given by the distribution P (σ ). Each 
state interacts with nucleons of the target nucleus according to 
the Gribov–Glauber model. The result is summed over all possible 
fluctuations, which corresponds to averaging with the distribution 
P (σ ) at the amplitude level.

Based on the similarity between the pion and ρ meson wave 
functions suggested by the additive quark model and our discus-
sion above, it is natural to assume that P (σ ) for the ρN interaction 
should be similar to the pion Pπ (σ ), which we additionally mul-
tiply by the factor of 1/(1 + (σ /σ0)

2) to take into account the 
enhanced contribution of small σ in the ρN interaction (we ex-
plained above that the contribution of small-σ fluctuations to the 
γ N → ρN amplitude is expected to be enhanced compared to the 
π N → π N one):

P (σ ) = C
1

1 + (σ /σ0)2 e−(σ /σ0−1)2/%2
. (11)

The parameterization of Eq. (11) satisfies the basic QCD constraint 
of P (σ = 0) ̸= 0 and also P (σ → ∞) → 0. The free parameters C , 
σ0 and % are found from the following constraints:

∫
dσ P (σ ) = 1 ,

∫
dσ P (σ )σ = ⟨σ ⟩ ,

∫
dσ P (σ )σ 2 = ⟨σ ⟩2(1 + ωσ ) , (12)

where ⟨σ ⟩ = σ̂ρN in the mVMD model, see Eq. (9).
The quantity ωσ parametrizes the dispersion of P (σ ) around its 

mean value ⟨σ ⟩, i.e., it characterizes the strength of cross section 
fluctuations. It can be determined using experimental information 
on the photon diffraction dissociation, in particular, the factor-
ization of the photon and the pion diffraction dissociation cross 
sections scaled by the respective total cross sections. In detail, the 
measurement [51] of inclusive diffraction dissociation of photons 
on hydrogen, γ p → Xp, in the range of 75 < Eγ < 148 GeV and 
M2

X/s < 0.1 (M X denotes the produced diffractive mass) and the 
control measurement of inclusive diffraction dissociation of pions 
in the π p → Xp reaction at Eπ = 100 GeV showed that the re-
spective M2

X distributions scaled by the total cross sections are 
very similar in the photon and pion cases. For the cross sections 
integrated over M2

X , this observation means that:

dσγ p→Xp(t = 0)/dt

σγ p
≈ dσπ p→Xp(t = 0)/dt

σπ p
= ωπ

σ

16π
σπ N , (13)

where in the last equation we expressed the cross section of pion 
diffraction dissociation in terms of ωπ

σ characterizing the Pπ (σ )
distribution and the total pion–nucleon cross section σπ N .

On the other hand, using the formalism of cross section fluctu-
ations for the ρ-nucleon scattering and the mVMD model for the 
γ –ρ transition, we obtain for the cross section of photon diffrac-
tion dissociation [compare to Eq. (5)]:

dσγ p→Xp(t = 0)

dt
= 1

16π

(
e
fρ

)2 [∫
dσ P (σ )σ 2 − (σ̂ρN )2

]

= ωσ

16π

(
e
fρ

)2

(σ̂ρN)2 , (14)

where the diffraction dissociation final state X by construction 
does not contain ρ . The inelastic final state X is selected exper-
imentally by analyzing the differential cross section as a function 
of the produced diffractive mass M X and corresponds to the val-
ues of M X beyond the ρ peak, M2

X > 1.5–2 GeV2 [51]. Substituting 
Eq. (14) in Eq. (13) we obtain the desired constraint on ωσ :

ωσ =
f 2
ρ

e2

σπ Nσγ p

σ̂ 2
ρN

ωπ
σ , (15)

where the total photon–proton cross section σγ p is taken from the 
fit to data [4].

For the pion projectile, we use the constituent quark counting 
rule for the ratio of the nucleon–nucleon and the pion–nucleon 
total cross sections and obtain:

ωπ
σ (s) = 3

2
ωN

σ (s) . (16)

Here we effectively use validity of the limiting fragmentation 
which is well established experimentally.

The pattern of cross section fluctuations for the nucleon projec-
tile has the following dependence of the invariant collision energy 

• “Two birds with one stone”: we describe correctly the elementary 𝛾p→ρp 
cross section and include inelastic Gribov shadowing in σ𝛾A→ρA 

•  → describe well normalization and W-dependence σ𝛾A→ρA, Frankfurt, Guzey, Strikman, 
Zhalov, PLB 732 (2016) 51
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Guzey, Kryshen, Zhalov, PRC 93 (2016) 055206

• Combination of mVMD and Gribov-Glauber models: 
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FIG. 2: The dσPbPb→ρPbPb(y)/dy cross section as a function of the ρ meson rapidity y at
√
sNN = 5.02 TeV. Predictions of

the combination of the modified VMD and Gribov–Glauber models (mVMD-GGM) are shown for the four considered reaction
channels. The solid curves correspond to the calculation using the nominal value of ωρσ; the shaded areas show the theoretical
uncertainty in modeling of this quantity. The dashed curves labeled “one-side” show the contribution of the first term in
Eq. (1).

where V stands for J/ψ or ψ(2S) mesons (ψ(2S) is the first radially-excited charmonium state with JPC = 1−−);
αs(µ2) is the strong coupling constant; xgp(x, µ2) is the gluon density of the proton evaluated at the light-cone
momentum fraction x = M2

V /W
2
γp and the resolution scale µ; Cp(µ2) is the normalization factor depending on

approximations used in the evaluation of the γp → V p amplitude.
In the case of J/ψ photoproduction on the proton, Eq. (9) was first derived in [14] using the non-relativistic approxi-

mation for the J/ψ wave function; it was found that µ2 = M2
J/ψ/4 = 2.4 GeV2 and Cp(µ2) = π3ΓeeM3

J/ψ/(48αe.m.µ8),

where Γee is the J/ψ → e+e− decay width and αe.m. is the fine-structure constant. Going beyond this approxima-
tion [41, 42], one obtains Cp(µ2) = F 2(µ2)R̄2

g(1 + η2)π3ΓeeM3
J/ψ/(48αe.m.µ8), where η is the ratio of the real to the

imaginary parts of the γp → J/ψp scattering amplitude, R̄g ≈ 1.2 is the skewness factor describing the enhancement
of the γp → J/ψp amplitude due to its off-forward kinematics, F 2(µ2) ≈ 0.5 is the factor taking into account the
effects of the quark transverse momentum in the J/ψ wave function. Note that Eq. (9) can also be generalized beyond
the leading logarithmic approximation by including the gluon transverse momenta in the gluon ladder [41].
For the case of ψ(2S), the same framework is immediately applicable with µ2 = M2

ψ(2S)/4 = 3.4 GeV2 in the

non-relativistic limit for the ψ(2S) wave function [43].
The non-zero charm quark transverse momentum in the charmonium wave function leads to an effective increase

of the resolution scale µ2 at which the gluon distribution in Eq. (9) is probed. In our approach, we determine µ2
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FIG. 3: The dσPbPb→φPbPb(y)/dy cross section as a function of the φ meson rapidity y at
√
sNN = 5.02 TeV. For notation, see

Fig. 2.

phenomenologically by requiring that Eq. (9) with a wide array of modern leading-order (LO) gluon distributions of
the proton describes the high-Wγp dependence of the σγp→J/ψp(Wγp) cross section measured at HERA and the LHC
by the LHCb collaboration and the σγp→ψ(2S)p(Wγp) cross section measured at HERA. This gives µ2 ≈ 3 GeV2 for
J/ψ [16] and µ2 ≈ 4 GeV2 for ψ(2S) [44], respectively. The factor of Cp(µ2) is chosen to reproduce the normalization
of the respective experimental cross sections at W = 100 GeV. The resulting LO pQCD framework based on Eq. (9)
provides good description of all high-energy HERA and LHC data on charmonium (J/ψ and ψ(2S)) photoproduction
on the proton.
The application of Eq. (9) to nuclear targets allows one to consider coherent photoproduction of charmonia on

nuclei in pQCD. The corresponding cross section integrated over the momentum transfer t reads [16]:

σγA→V A(Wγp) = CA(µ
2)[αs(µ

2)xgA(x, µ
2)]2ΦA(tmin)

=
CA(µ2)

Cp(µ2)

dσγp→V p(Wγp, t = 0)

dt

[

xgA(x, µ2)

Axgp(x, µ2)

]2

ΦA(tmin) , (10)

where xgA(x, µ2) is the nuclear gluon distribution; ΦA(tmin) =
∫ tmin

−∞
dt|FA(t)|2, where FA(t) is the nuclear form

factor; tmin = −x2m2
N is the minimal momentum transfer squared, where mN is the nucleon mass; CA(µ2)/Cp(µ2) =

(1+ η2A)R̄
2
g,A/[(1+ η2)R̄2

g] ≈ 0.9, where R̄g,A and ηA are the skewness and the ratio of the real to the imaginary parts
of the γA → V A scattering amplitude, respectively.
One can see from Eq. (10) that exclusive photoproduction of charmonia on nuclei directly probes the gluon nuclear

shadowing quantified by the ratio Rg(x, µ2) = xgA(x, µ2)/[Axgp(x, µ2)]. In particular, a comparison of the nuclear

- ρ: P(σ) from data 
- ɸ: P(σ) from σɸN 
(Donnachie, Landshoff, 1995) + 
constituent quark 

• “Ears” for ρ: effect of 
Reggeon in σρN 

• Change of shape for 0nXn-
channel due to large W𝛾p 
enhancement of photon flux

0nXn-channel: e.m. excitation of 
either of nuclei with forward 
emission > 1 neutron in ZDC
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Fig. 6 Measured differential cross section of J/ψ photoproduc-
tion in ultra-peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV at

−0.9 < y < 0.9 for coherent (a) and incoherent (b) events. The er-
ror is the quadratic sum of the statistical and systematic errors. The
theoretical calculations described in the text are also shown

tion by more than 3 standard deviations. So does the predic-
tion based on the HKN07 parametrization, which includes
less gluon shadowing than EPS09.

The model AB-EPS08, significantly underestimates the
measured cross section by about a factor of two (about 5
standard deviations), indicating that the gluon shadowing is
too strong in the EPS08 parameterization. The leading twist
calculation (RSZ-LTA) is also significantly below the data,
by about 2–3 sigma.

For the incoherent cross section, shown in Fig. 6(b), there
are three model predictions available, LM, STARLIGHT,
and RSZ-LTA. The measured value deviates by about
two standard deviations from the LM prediction, while
STARLIGHT predicts an incoherent cross section 60 % too
high, and RSZ-LTA a factor 4 too low. Taking the ratio be-
tween the incoherent and coherent cross section provides
further constraints on the treatment of the nuclear modifi-
cations implemented in the different models. Another ad-
vantage is that the photon spectrum is factorized out, so
that the comparison directly probes the ratio of the pho-
tonuclear cross sections. The ratio obtained from data is

0.41+0.10
−0.08(sta + sys). This can be compared with 0.21 from

LM, 0.41 from STARLIGHT, and 0.17 from RSZ-LTA. Al-
though the RSZ-LTA model is quite close for the coherent
cross section at mid-rapidity, it seems to underpredict the
incoherent cross section. The LM model also predicts a too
low ratio. STARLIGHT, on the other hand, has about the
right ratio of incoherent-to-coherent cross section, although
it does not reproduce any of the cross sections individually.
All three models use the Glauber model to calculate the in-
coherent cross section, but the implementation and the input
cross section for γ + p → J/ψ + p varies. In STARLIGHT
the scaling of the inelastic J/ψ + nucleus cross section,
ranges from A2/3 to A, depending on the J/ψ + nucleon
cross section. In the first case, only the nucleons on the sur-
face participate in the scattering, while in the second one
all the nucleons contribute. The cross section for incoherent
photoproduction is assumed in STARLIGHT to follow the
same scaling, while in the other models, the reduction with
respect to the A scaling is larger.

The measured values for the γ γ cross sections are 20 %
above but fully compatible within 1.0 and 1.5 sigma with the
STARLIGHT prediction for the high and low invariant mass
intervals, respectively, if the statistical and systematic errors
are added in quadrature. This result provides important con-
straints on calculations that include terms of higher orders
in αem. A reduction in the two-photon cross section of up
to 30 % compared with leading-order calculations has been
predicted [14, 15]. The result for the two-photon cross sec-
tion to di-lepton pairs, measured by ALICE with a precision
of 12 % and 16 % for the low and high invariant mass range,
respectively, is thus fully consistent with STARLIGHT, and
sets limits on the contribution from higher-order terms [16].
This result supports the ALICE J/ψ photoproduction mea-
surement in the forward rapidity region [6], where the cross
section was based on σγγ .

7 Summary

In summary, the first measurement of coherent and incoher-
ent J/ψ photoproduction and two-photon production of di-
lepton pairs in Pb–Pb collisions at mid-rapidity at the LHC
has been presented and compared with model calculations.
The J/ψ photoproduction cross sections provide a powerful
tool to constrain the nuclear gluon shadowing in the region
x ≈ 10−3. The coherent J/ψ cross section is found to be
in good agreement with the model which incorporates the
nuclear gluon shadowing according to the EPS09 parame-
terization (AB-EPS09).

Models which include no nuclear gluon shadowing are
inconsistent with the measured results, as those which use
the Glauber model to incorporate nuclear effects. The AB-
HKN07 and AB-EPS08 models contain too little or too

ALICE Collaboration / Physics Letters B 751 (2015) 358–370 363

Table 3
Number of events for different neutron emissions in the ψ(2S) → l+l−π+π− pro-
cess.

Data Fraction STARLIGHT RSZ

0n 0n 20 (71+9
−11)% 66% 70%

Xn 8 (29+11
−9 )% 34% 30%

0n Xn 7 (25+11
−9 )% 25% 23%

Xn Xn 1 (4+8
−3)% 9% 7%

3.5. The ψ(2S) to J/ψ cross section ratio

In order to compare the coherent ψ(2S) cross section to the 
previously measured J/ψ cross section [14], we report on the 
ψ(2S)/J/ψ cross section ratio. Many of the systematic uncertain-
ties of these measurements are correlated and cancel out in the 
ratio. Since the analysis relies on the same data sample and on the 
same trigger, the systematic uncertainties for the luminosity eval-
uation, trigger efficiency, and dead time were considered as fully 
correlated. Several uncertainties, corresponding to the same quan-
tity, measured at slightly different energies (corresponding to the 
different masses), are partially correlated, while the uncorrelated 
part is small. Namely, the systematic uncertainties for e/µ sepa-
ration and the measurement of the neutron number are strongly 
correlated and hence can be neglected in the ratio. The systematic 
uncertainties connected to the signal extraction and the branching 
ratio are considered uncorrelated between the two measurements. 
The quadratic sum of these sources together with the statistic 
uncertainty was used to combine different channels in both mea-
surements. For the combination of asymmetric uncertainties the 
prescription from reference [33] was used. The value of the ratio is 
(dσ coh

ψ(2S)/dy)/(dσ coh
J/ψ /dy) = 0.34+0.08

−0.07(stat + syst).

4. Discussion

We have previously measured the coherent photo-production 
cross section for the J/ψ vector meson at mid and forward rapidi-
ties [13,14]. The results showed that the measured cross section 
was in good agreement with models that include a nuclear gluon 
shadowing consistent with the EPS09 parametrization [9]. Models 
based on the colour dipole model or hadronic interactions of the 
J/ψ with nuclear matter were disfavoured. The ψ(2S) is similar to 
the J/ψ in its composition (cc) and mass, but it has a more com-
plicated wave function as a consequence of it being a 2S rather 
than a 1S state, and has a larger radius. There is a consensus view 
about the presence of a node in the ψ(2S) wavefunction: few au-
thors pointed out that this node gives a natural explanation of the 
ψ(2S) smaller cross section compared to the J/ψ one; in addition 
it was argued that the node may give strong cancellations in the 
scattering amplitude in γ -nucleus interactions [34,35].

In Pb–Pb collisions the poor knowledge of the ψ(2S) wave 
function as a function of the transverse quark pair separation d
makes it difficult to estimate the nuclear matter effects.

There are predictions by five different groups for coherent 
ψ(2S) production in ultra-peripheral Pb–Pb collisions; some of 
them published several different calculations (see Fig. 3). The 
model by Adeluyi and Nguyen (AN) is based on a calculation where 
the ψ(2S) cross section is directly proportional to the gluon dis-
tribution squared [18]. It is essentially the same model used by 
Adeluyi and Bertulani [36] to calculate the coherent J/ψ cross sec-
tion, which was found to be in good agreement with the ALICE 
data, when coupled to the EPS09 shadowing parametrization. The 
calculations are done for four different parameterizations of the 
nuclear gluon distribution: EPS08 [37], EPS09 [9], HKN07 [38], and 

Fig. 3. Measured differential cross section of ψ(2S) photo-production in ultra-
peripheral Pb–Pb collisions at √sNN = 2.76 TeV at −0.9 < y < 0.9. The uncertainty 
was obtained using the prescription from reference [33]. The theoretical calculations 
described in the text are also shown.

MSTW08 [39]. The last one (MSTW08) corresponds to a scaling of 
the γ p cross section neglecting any nuclear effects (impulse ap-
proximation). It is worth noting they used for the ψ(2S) the same 
wave function used for the J/ψ . The model by Gay Ducati, Griep, 
and Machado (GDGM) [19] is based on the colour dipole model 
and is similar to the model by Goncalves and Machado for coher-
ent J/ψ production [20]. The latter calculation could not reproduce 
the ALICE coherent J/ψ measurement. The new calculation has, 
however, been tuned to correctly reproduce the ALICE J/ψ result. 
The model by Lappi and Mantysaari (LM) is based on the colour 
dipole model [21]. Their prediction for the J/ψ was about a fac-
tor of two above the cross section measured by ALICE. The current 
ψ(2S) cross section has been scaled down to compensate for this 
discrepancy. The model by Guzey and Zhalov (GZ) is based on the 
leading approximation of perturbative QCD [22]. They used dif-
ferent gluon shadowing predictions, using the dynamical leading 
twist theory or the EPS09 fit. Finally, STARLIGHT uses the Vector 
Meson Dominance model and a parametrization of the existing 
HERA data to calculate the ψ(2S) cross section from a Glauber 
model assuming only hadronic interactions of the ψ(2S) [17]. This 
model does not implement nuclear gluon shadowing.

It is worth noting that removing all nuclear effects in STARLIGHT 
gives a cross section for J/ψ production almost identical to the 
Adeluyi–Bertulani model, if the MSTW08 parametrization is used. 
The last one corresponds to a scaling of the γ –p cross section 
neglecting any nuclear effects, i.e. considering all nucleons con-
tributing to the scattering (impulse approximation). Conversely, 
when applying the same procedure to the ψ(2S) vector meson 
production, the comparison shows that STARLIGHT cross section 
is ≃ 50% smaller with respect to the Adeluyi–Nguyen one. This 
result may indicate that the γ + p → ψ(2S) + p cross section is 
parametrized in a different way in the two models, due to the 
limited experimental data, making it difficult to tune the models. 
For J/ψ , a wealth of γ + p → J/ψ + p cross section data has been 
obtained by ZEUS and H1, while the process γ + p → ψ(2S) + p
was measured by H1 at four different energies only. This makes it 
much harder to constrain the theoretical cross section to the ex-
perimental data. Since the effect of gluon shadowing decreases the 
vector meson production cross section, this may explain why the 
ψ(2S) STARLIGHT cross section is close to the AN-EPS09 model, 
while it is a factor of two larger for J/ψ .

The coherent ψ(2S) photo-production cross section is com-
pared to calculations from twelve different models in Fig. 3. Since 
a comprehensive model uncertainty is not provided by the model 
authors, the comparison with the experimental results is quanti-
fied by dividing the difference between the value of each model at 
y = 0 and the experimental result, by the uncertainty of the mea-

Abelev et al. [ALICE], PLB718 (2013) 1273; 
Abbas et al. [ALICE], EPJ C 73 (2013) 2617 Adam et al. [ALICE], PLB751 (2015) 358

• “Consistent with models 
incorporating moderate nuclear 
gluon shadowing at x ≈10-3”

J/𝜓 𝜓(2S)

• “Disfavors models implementing 
strong nuclear gluon shadowing”



• Nuclear gluon distribution gA(x,µ2) = probability (at LO) to find gluon in 
nucleus with momentum fraction x at resolution scale µ2. 

• Important element of QCD phenomenology of hard processes with nuclei: 
cold nuclear matter effects (RHIC, LHC), gluon saturation (RHIC, LHC, EIC)  

• gA(x,µ2) determined from global QCD fits to fixed-target DIS and dA data (RHIC)

Nuclear shadowing in nuclear gluon distribution  
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RA
uV

(x,Q2
0) = RA

dV
(x,Q2

0) was made as only one type of data sensitive to the large-x valence quarks
was included in these fits. Indeed, at large x, one can approximate

dσℓ+A
DIS ∝

(
4

9

)

uAV +

(
1

9

)

dAV ∝ upV

[

RA
uV

+RA
dV

dpV
upV

Z + 4N

N + 4Z

]

≈ upV

[

RA
uV

+
1

2
RA

dV

]

, (4)

which underscores the fact that these data can constrain only a certain linear combination of RA
uV

and RA
dV

. Despite the lack of other type of data sensitive to the valence quarks, the assumption

RA
uV

(x,Q2
0) = RA

dV
(x,Q2

0) was released in a recent nCTEQ work leading to mutually wildly different

RA
uV

and RA
dV

(see Fig.1 in Ref.[18]). Other type of data sensitive to the valence quarks would
obviously be required to pin down them separately in a more realistic manner. Despite the fact
that some neutrino data (also sensitive to the valence quarks) was included in the dssz fit, the
authors did not investigate the possible difference between RA

uV
and RA

dV
in the paper.

In the case of RA
u , which here generally represents the sea quark modification, all parametriza-

tions are in a fair agreement in the data-constrained region. This is also true if the nCTEQ results
are considered (Fig.1 in Ref.[18]). Above the parametrization scale Q2 > Q2

0, the sea quark modi-
fications are also significantly affected, especially at large x (x ! 0.2), by the corresponding gluon
modification RA

g via the DGLAP evolution.
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Figure 3: Comparison of the gluon nuclear modification factors for the lead nucleus at Q2 = 10GeV2 (left), and the
nuclear modification for inclusive pion production in d+Au collisions at midrapidity.

The largest differences among eps09, hkn07, and dssz are in the nuclear effects for the gluon
PDFs, shown in Fig. 3. The origins of the large differences are more or less known: The DIS and
Drell-Yan data are mainly sensitive to the quarks, and thus leave RA

g quite unconstrained. To
improve on this, eps09 and dssz make use of the nuclear modification observed in the inclusive
pion production at RHIC [26, 27]. An example of these data are shown in Fig. 3. Although the
pion data included in eps09 and dssz are not exactly the same, it may still look surprising how
different the resulting RA

g are. The reason lies (as noted also e.g. in [28]) in the use of different

parton-to-pion fragmentation functions (FFs) Dk→π+X(z,Q2) in the calculation of the inclusive
pion production cross sections

dσd+Au→π+X =
∑

i,j,k

fd
i ⊗ dσ̂ij→k ⊗ fAu

j ⊗Dk→π+X . (5)

4

Rg(x,Q
2) =

gA(x,Q2)

Agp(x,Q2)
H. Pauukunen, NPA 926 (2014) 24

shadowing

• At small x < 0.005, gA < AgN  → 
shadowing: gA(x,µ2) is known with large 
uncertainties → 

• pA@LHC data can help in 
antishadowing region, Armesto et al, arXiv:
1512.01528; Eskola et al, JHEP 1310 (2013) 213 

• Best future option: Electron-Ion Collider 
in the US, Accardi et al, ArXiv:1212.1701 

• Option right now: Charmonium 
photoproduction in Pb-Pb UPCs@LHC
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Exclusive charmonium photoproduction  
• In leading logarithmic approximation of perturbative QCD and non-relativistic 
approximation for charmonium wave function (J/𝜓, 𝜓(2S)):
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Abstract. Cross section of diffractive J / ~  production in 
deep inelastic scattering in the Born and the leading-log 
approximations of perturbative QCD are calculated. 

I Introduction 

The process of J /7  j electroproduction arouses interest 
due to two reasons. First, it can be calculated within the 
perturbative QCD and second, its cross section is propor- 
tional to the gluon structure function. So, it is a good way 
to study the gluon distribution inside a proton [1, 2]. 

In the reactions of heavy-quark photoproduction 7N--, 
c6X, a popular approach is the "photon-gluon fusion" 
mechanism [3, 1, 4, 5] based on the subprocess 7g~cd. 
The amplitude and cross section of inelastic J~ 7 J produc- 
tion via the same mechanism was calculated in [6] and 
then discussed in [7]. This approach has been called [5] 
diffractive J~ 7 j production, as (in the first approximation) 
the cross section does not depend on energy and there is 
no flavour exchange. Strictly speaking, this is not a true 
diffractive process. There is a colour exchange in this case 
due to the colour of the gluon content in the target; as 

da 
a consequence, the inclusive J/qJ cross section ~zz ~const .  

at z ~  1, instead of the &(1 - z )  or 1/(1 - z )  behaviours that 
are usual for diffractive processes (z is the part of photon 
momenta carried away by the J /7  J meson). 

The goal of this paper is to consider the exclusive (in 
some sense elastic) diffractive J / ~  electroproduction that 
is described by the exchange of a colourless two-gluon 
system*; in the Born approximation by the diagrams in 
Fig. 1. In the leading-log approximation (LLA), instead of 
the simple two-gluon "pomeron" [9], one has to use the 
whole system of LLA ladder diagrams; for t -- 0 this repro- 
duces exactly the gluon structure function ~G(Y, ~2). 

* The model for elastic and diffractive J/~ production based on 
vector meson dominance and pomeron exchange was considered 
recently in [8]. 

Thus, our amplitude is proportional to ~G(Y, ~2) and the 
exclusive diffractive cross sec t ion- to  the square of the 
gluon structure function. Due to this fact, the reaction 
7*+N--*J/Tt+N feels the variation of 2G(Y, ~2) better 
than the inclusive J/~t' cross section, which depends on 
YG(Y, ~2) only linearly. Therefore, this process is one of 
the best ways to measure the role of absorptive correc- 
tions (pomeron cuts contributions) and to observe the 
saturation of gluon density predicted in the frame-work of 
perturbative QCD in 1-10]. 

In Sect. 2 we calculate the amplitude of diffractive J / 7  j 
photoproduction. In Sect. 3 we discuss the spin structure 
of this amplitude and correspondingly the distribution in 
azimuthal angle. In Sect. 4 the numerical estimates of the 
single and double diffractive dissociation cross sections 
are given. 

2 Amplitude of ~,* +p--,J/W+p 

The Born amplitude of 7*+p--*J/~+p reaction is de- 
scribed by the sum of the two diagrams in Fig. 1. As the 
binding energy of S-wave e6-quarks J /7  J system is small 
(much less than the charm quark mass me= m), one can 
follow I-6] and use the nonrelativistic approximation, 
writing the product of two propagators (k and k' in Fig. 1) 
and the J / 7  J vertex (i.e. J / 7  J wave function integrated 
over the relative momenta of c6^quarks k = k '  in J / 7  J 
rest-frame system) in the form g(k+m)Tu. The constant 

~ 7  

l +  

qJ 
k 

a b 

Fig. la, b. Feynman diagrams for diffractive J/7 J production 

• Corrections on quark and gluon kT, non-forward kinematics, real part of amplitude → 
corrections to C(µ2) and µ2, Ryskin, Roberts, Martin, Levin, Z. Phys. (1997); Frankfurt, Koepf, Strikman (1997)  
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• Application to nuclear targets:
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Leading twist nuclear shadowing model
• Based on generalization of Gribov-Glauber model and QCD factorization, 
Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the interaction with one, two, and three nucleons, respectively.
Graph a gives the impulse approximation; graphs b and c contribute to the shadowing correction.

Fig. 11. Graphs corresponding to the gluon nuclear PDF. For the legend, see Fig. 10.

in the case of the deuteron target. One should also note that Eqs. (43) and (44) do not require the decomposition over
twists. The only requirement is that the nucleus is a system of color neutral objects—nucleons. The data on the EMC ratio
F2A(x,Q 2)/[AF2N(x,Q 2)] for x > 0.1 indicate that the corrections to the multinucleon picture of the nucleus do not exceed
few percent for x  0.5, see the discussion in Section 3.2.

The next crucial step in the derivation of ourmaster equation for nuclear PDFs is the use of theQCD factorization theorems
for inclusive DIS and hard diffraction in DIS. According to the QCD factorization theorem for inclusive DIS (for a review, see,
e.g., [58]) the inclusive structure function F2(x,Q 2) (of any target) is given by the convolution of hard scattering coefficients
Cj with the parton distribution functions of the target fj (j is the parton flavor):

F2(x,Q 2) = x
X

j=q,q̄,g

Z 1

x

dy
y
Cj

✓
x
y
,Q 2

◆
fj(y,Q 2). (45)

Since the coefficient functions Cj do not depend on the target, Eq. (34) leads to the relation between nuclear PDFs of flavor
j, which are evaluated in the impulse approximation, f (a)

j/A , and the nucleon PDFs fj/N ,

xf (a)
j/A (x,Q 2) = Axfj/N(x,Q 2). (46)

In the graphical form, f (a)
j/A is given by graph a in Figs. 10 and 11.

Note also that one can take into account the difference between the proton and neutron PDFs by replacing Afj/N !
Zfj/p + (A � Z)fj/n, where Z is the number of protons, and the subscripts p and n refer to the free proton and neutron,
respectively.

Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states that, at given fixed t and xP

and in the leading twist (LT) approximation, the diffractive structure function FD(4)
2 can be written as the convolution of the

same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)
j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (47)

- +

Inelastic shadowing dominates 
→ given by diffraction in ep DIS 
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• Diffractive structure functions (dPDFs) 
measured at HERA are large and scale with 
Q2 → large gluon shadowing predicted  →

Author's personal copy

302 L. Frankfurt et al. / Physics Reports 512 (2012) 255–393

Fig. 31. Predictions for nuclear shadowing at the input scale Q 2
0 = 4 GeV2. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at

Q 2 = 4. The four upper panels are for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10_H and FGS10_L (see the
text).

Another important quantity related to the longitudinal structure function is the ratio of the virtual photon-target cross
sections for the longitudinal and transverse polarizations of the virtual photon,

R ⌘ �L

�T
= FL(x,Q 2)

F2(x,Q 2) � FL(x,Q 2)
. (123)

Below we present our predictions for the super-ratio RA/RN , which is the ratio of the nuclear to the nucleon ratios R:

RA

RN
⌘ FA

L (x,Q 2)

F2A(x,Q 2) � FA
L (x,Q 2)

F2N(x,Q 2) � FN
L (x,Q 2)

FN
L (x,Q 2)

= FA
L (x,Q 2)

AFN
L (x,Q 2)

AF2N(x,Q 2)

F2A(x,Q 2)

1 � FN
L (x,Q 2)/F2N(x,Q 2)

1 � FA
L (x,Q 2)/F2A(x,Q 2)

. (124)

The advantage of considering the super-ratio RA/RN is that this quantity is essentially insensitive to the value of the
elementary ratio RN .

Fig. 36 presents our predictions for RA/RN of Eq. (124) for 40Ca and 208Pb for four different values of Q 2 as a function of
Bjorken x. Both models FGS10_H and FGS10_L give numerically indistinguishable predictions for RA/RN . Also, as one can see

Pb, Q2=4 GeV2Rg(x)
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Comparison to SPb from ALICE UPC data 

• Good agreement with ALICE data on coherent J/𝜓 photoproduction in Pb-Pb 
UPCs@2.76 TeV  → first direct evidence of large gluon nuclear shadowing at 
x=0.001. 

• We predict similar suppression J/𝜓 и 𝜓(2S)  → tension with ALICE data on 
𝜓(2S) photoproduction in Pb-Pb UPCs at y=0  → maybe resolved in Run 2.

4

case of ψ(2S) corresponds to µ2 = 4 GeV2. In the figure, we show two sets of predictions:

the predictions of the dynamical leading twist theory of nuclear shadowing [12] (the curves

labeled “LTA+CTEQ6L1”, which span the theoretical uncertainty band) and the results of

the EPS09 global QCD fit of nuclear PDFs [13] (the central value and the associated shaded

uncertainty band labeled “EPS09”).

In the case of photoproduction of J/ψ, the theoretical predictions describe well the values

of S(Wγp) (the filled squares with the associated errors), which were model-independently

extracted in the analysis [1] of the ALICE data on J/ψ photoproduction in Pb-Pb ultrape-

ripheral collisions at the LHC at
√
s = 2.76 TeV [3, 4].
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FIG. 1: The suppression factor of S(Wγp) of Eq. (5) for photoproduction of J/ψ (two upper

panels) and ψ(2S) (two lower panels) on 208Pb as a function of x = M2
V /W

2
γp. We show two sets

of theoretical predictions: those of the leading twist theory of nuclear shadowing [12] (the curves

labeled “LTA+CTEQ6L1”, which span the theoretical uncertainty band) and those of the EPS09

global QCD fit of nuclear PDFs [13] (the central value and the associated shaded uncertainty band

labeled “EPS09”). The filled squares and the associated errors are the results of the analysis of [1]

in the J/ψ case.
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Coherent J/𝜓 photoproduction in Pb-Pb UPCs 
with forward neutron emission

• UPCs can be accompanied by e.m. excitation 
of colliding ions followed by forward neutron 
emission, Baltz, Klein, Nystrand, PRL 89 (2002) 012301  

FIGURES

....

Au*

Au

Au

rho

Au*

Au

Au*

FIG. 1. The dominant Feynman diagrams for vector meson production with nuclear excitation.

11

• CMS data in 0nXn-channel* agrees 
very well with our predictions of large 
gluon shadowing, CMS, arXiv:1605.06966 
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 (2.76 TeV)-1bµ              159 ψ Pb+Pb+J/→Pb+Pb 
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Figure 2: Differential cross section versus rapidity for coherent J/y production in ultra-
peripheral PbPb collisions at

p
sNN = 2.76 TeV, measured by ALICE [29, 30] and CMS (see text

for details). The vertical error bars include the statistical and systematic uncertainties added
in quadrature, and the horizontal bars represent the range of the measurements in y. Also the
impulse approximation and the leading twist approximation calculations are shown (see text
for details).

input and implements a gluon recombination mechanism within the leading twist approxima-
tion result. This results in an effective nuclear gluon shadowing. The theoretical uncertainty
band for the leading twist approximation result shown in Fig. 2 is 12% and is due to the uncer-
tainty in the strength of the gluon recombination mechanism. This uncertainty is uncorrelated
with the photon flux uncertainty. The nuclear gluon distribution uncertainty is largest at mid-
rapidity where x ⇠ 10�3 in the nuclear gluon distribution. At forward rapidity there is a
two-fold ambiguity about the photon direction but the measurements are mostly sensitive to
x ⇠ 10�2 [29].

The data are also compared to the impulse approximation result that uses data from exclusive
J/y photoproduction in g + p interactions to estimate the coherent J/y cross section in g + Pb
collisions. By using g + p data, the impulse approximation calculation neglects all nuclear
effects such as the expected modification of the gluon density in the lead nuclei compared
to that of the proton. This calculation overpredicts the CMS measurement by more than 3
standard deviations in the rapidity interval 1.8 < |y| < 2.3, when adding the experimental and
theoretical uncertainties in quadrature.

The impulse approximation calculation is derived from the product of two quantities: the elas-
tic nuclear form factor FA(t) and the differential cross section ds/dt of g + p ! J/y + p, where
t is the momentum transfer from the target nucleus squared. The FA(t) is the Fourier transform
of the matter density r(t), while the elementary cross section ds/dt has been measured by var-
ious collaborations [4–8], as described in Section 1. The impulse approximation result shown
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Predictions for Run 2: J/𝜓 and 𝜓’ mesons 
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FIG. 4: The dσPbPb→J/ψPbPb(y)/dy cross section as a function of the J/ψ rapidity y at
√
sNN = 5.02 TeV: predictions of LO

pQCD with the gluon shadowing ratio Rg(x,µ2) of the leading twist nuclear shadowing model. The shaded areas span the
range of predictions corresponding to the upper and lower limits on Rg(x, µ

2).

suppression factor extracted from the ALICE data on exclusive J/ψ photoproduction in Pb-Pb UPCs at
√
sNN = 2.76

TeV [10, 11] to the theoretical predictions based on Eq. (10) has given first direct and essentially model-independent
evidence of large nuclear gluon shadowing at x = 0.001, Rg(x = 10−3, µ2 = 3 GeV2) ≈ 0.6 [16, 18]. Also, since the
values of the resolution scale µ2 probed in the J/ψ and ψ(2S) cases are close, the application of Eq. (10) predicts that
the nuclear suppression of the σγA→J/ψA(Wγp) and σγA→ψ(2S)A(Wγp) cross sections due to gluon nuclear shadowing
should also be similar [45].
Figures 4 and 5 present dσPbPb→J/ψPbPb(y)/dy as a function of the J/ψ rapidity y. They correspond to the

calculations using LO pQCD in Eqs. (9) and (10) and results of the leading twist nuclear shadowing model [46] and
the EPS09 nuclear PDFs [47] for the gluon shadowing ratio Rg(x, µ2) at µ2 = 3 GeV2, respectively. In Fig. 4, the
shaded areas span the range of predictions corresponding to the upper and lower limits on Rg(x, µ2); in Fig. 5, the
shaded areas show the theoretical uncertainties of Rg(x, µ2) in the EPS09 global fit of nuclear PDFs.
In Fig. 5, we also show the one-side contribution of the first term in Eq. (1) by the dashed curves. Similarly

to the case of light vector mesons, the one-side rapidity distributions shown in the upper and lower panels are
dramatically different. As we explained above, this happens because of a decrease of the median impact parameter
b in the expression for N i

γ/A(ω) (5) in the 0nXn and XnXn-channels due to the electromagnetic excitations of the
nuclei leading to an enhanced large-ω contribution to the photon flux. Hence, this gives an opportunity to probe the
gluon distribution in nuclei gA(x, µ2) in the 0nXn and XnXn-channels at lower values of x than in the “total” and
0n0n-channels.
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FIG. 6: The dσPbPb→ψ(2S)PbPb(y)/dy cross section as a function of the ψ(2S) rapidity y at
√
sNN = 5.02 TeV. See Fig. 4 for

notations.

2.3. Exclusive photoproduction of Υ(1S) mesons in pQCD

An examination shows that the application of Eq. (9) to exclusive photoproduction of Υ vector mesons on the proton
fails to reproduce the Wγp-dependence of the data at leading-order (LO) accuracy, while providing good description
of the data at next-to-leading order (NLO) accuracy. Indeed, since the gluon distribution of the target is probed at
µ2 ≈ M2

Υ/4 = 22.4 GeV2, where the proton LO gluon densities at small x grow approximately as xgp(x, µ2) ∼ 1/xλ

with λ ≈ 0.4, Eq. (9) gives the Wγp-dependence of the dσγp→Υp(Wγp, t = 0)/dt cross section which is much faster
than that seen in the data [13, 49–52].
This is illustrated in Fig. 7, which shows a comparison of the available high-energy data on the t-integrated cross

section σγp→Υp(Wγp) to the LO (dot-dashed curve) and NLO (solid curve) pQCD predictions for this cross section
using the CTEQ6 gluon distributions of the proton [53]. This conclusion also confirms the observation that the LO
gluon density of the proton constrained to describe the data on exclusive J/ψ photoproduction on the proton cannot
be consistently extrapolated to exclusive Υ photoproduction [13, 15].
At the same time, the use in Eq. (9) of the NLO gluon distribution [15] obtained by fitting to the available

combined HERA and LHCb data on exclusive J/ψ photoproduction on the proton provides a good description of
Υ(1S) photoproduction in pp UPCs at

√
sNN = 7 and 8 TeV measured by the LHCb collaboration [13]. In addition,

we explicitly checked that the use of other NLO gluon distributions of the proton, e.g., the CTEQ6M gluon PDF [53],
reproduces the σγp→Υp(Wγp) cross section with sufficient accuracy — see the solid curve in Fig. 7.
In summary, the consistent description of exclusive photoproduction of Υ on both the proton and nucleus targets

requires NLO gluon distributions. Therefore, in our predictions for the γA → ΥA cross section, we use Eq. (10),

Guzey, Kryshen, Zhalov, PRC 93 (2016) 055206

• Combination of LO pQCD and leading twist nuclear shadowing model:

• Measurement in two 
channels  → separation 
of contributions of small 
and large W𝛾p → gA(x,µ2) 
at smaller x. 

• Suppression due to 
nuclear shadowing same 
for J/𝜓 and 𝜓’:

d� 0/dy

d�J/ /dy
= 0.17� 0.20

at y=0.
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Predictions for Run 2: Y meson 
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FIG. 8: The dσPbPb→Υ(1S)PbPb(y)/dy cross section as a function of the Υ rapidity y at
√
sNN = 5.02 TeV: NLO pQCD

calculations with Rg(x, µ2) given by the leading twist nuclear shadowing model (red band labeled “LTA”) and the EPS09 fit
(blue solid curve with the band); the shaded bands indicate uncertainties of the respective predictions. The dashed curve
labeled “one-side” is the contribution of the first term in Eq. (1).
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are compared to pQCD predictions of Eq. (9) using the leading-order (CTEQ6L) and next-to-leading order (CTEQ6M) gluon
distributions of the proton.

where the gluon shadowing ratio Rg(x, µ2) is evaluated at NLO accuracy.
Figure 8 shows dσPbPb→Υ(1S)PbPb(y)/dy as a function of the Υ(1S) rapidity y. The results correspond to NLO

pQCD calculations using for Rg(x, µ2) predictions of the leading twist nuclear shadowing model [46] (red band labeled
“LTA”) and the EPS09 nuclear PDFs [47] (blue solid curve with the band); the shaded bands indicate uncertainties
of the respective predictions. For the calculation with the EPS09 nuclear PDFs, we also show the contribution of the
first term in Eq. (1) (labeled “one-side”) by dashed curves.
One can see from Fig. 8 that the one-side cross section at large y gives the dominant contribution to the rapidity

distribution in the 0nXn and XnXn-channels. This allows one to be sensitive to the values of Wγp which are signif-
icantly larger than those in the corresponding UPC measurements without the forward neutron tagging. Hence, it
gives an opportunity to probe the nuclear gluon distribution gA(x, µ2) at much lower values of x.

3. CONCLUSIONS

Different approaches used in this paper emphasize different aspects of the dynamics of light and heavy vector
meson photoproduction on nuclei at high energies. The results presented in this paper attempt to emphasize several
qualitative features of these processes, which can be checked in Pb-Pb UPCs at the LHC in Run 2. In particular,
inelastic nuclear shadowing significantly reduces the magnitude and changes the shape of the rapidity distribution of ρ
and φ photoproduction; the large leading twist nuclear gluon shadowing suppresses significantly and similarly the J/ψ
and ψ(2S) photoproduction cross sections; the ratio of these cross sections is determined primarily by the magnitude
and the Wγp dependence of the ratio of the elementary γp → ψ(2S)p and γp → J/ψp cross sections; photoproduction
of Υ(1S) allows one to study the hard scale dependence of the leading twist nuclear gluon shadowing.
We also showed that exclusive photoproduction of vector mesons in AA UPCs accompanied by electromagnetic

excitations of the ions followed by the forward neutron emission enhances the contribution of large-energy photons to
these processes and allows one to access the γA → V A cross section at much larger values of Wγp.

��p!⌥p(W�p)

• Combination of NLO pQCD with LT shadowing: 
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labeled “one-side” is the contribution of the first term in Eq. (1).
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l Coherent photoproduction of vector mesons on nuclei in UPCs@LHC allows 
one to study nuclear shadowing in soft and hard processes at unprecedentedly 
high energies. 

l Photoproduction of ρ and ɸ on nuclei tests the roles of hadronic fluctuations of 
the photon and inelastic nuclear shadowing. 

l Photoproduction of J/𝜓, 𝜓’ and Υ on nuclei gives direct access to the nuclear 
gluon distribution gA(x,µ2) down to x ≈10-3 (5×10-4) at µ2 ≈ 3-4 GeV2 and allows 
one to study its µ2 dependence. 
   
l Two problems with pQCD description of UPCs data: 
     - large gluon shadowing leads to tension with ALICE data on 𝜓(2S) photoproduction 
in Pb-Pb UPCs@ 2.76 TeV → expecting Run 2 results  

  -  predicted cross section of incoherent J/𝜓 photoproduction in Pb-Pb UPCs@2.76 
TeV ~50% smaller than the experimental one  

l UPC measurements in pp, pA и AA collisions will continue in Run 2@LHC.   

Conclusions


