Leptonic B-decays with Emission of a Photon in the Final State

Anastasia Kozachuk

Lomonosov Moscow State University Faculty of Physics, Skobeltsyn Institute of Nuclear Physics

HSQCD'2016

June 27 – July 1 PNPI, Gatchina, Russia

July 1, 2016

Motivation

 $\blacksquare B_{(s)} \to \gamma l^+ l^- \ (b \to s l^+ l^-)$

- FCNCs are forbidden at tree level in the SM and BSM physics can be visible through contributions of new particles in the loops
- There are some descrepances between experimental values and predictions of the SM:

 $\begin{array}{l} \frac{Br(B^+ \rightarrow K^+ \mu^+ \mu^-)}{Br(B^+ \rightarrow K^+ e^+ e^-)} \ \approx 0.75 \ \mbox{(SM value is 1) at } 2.6\sigma \\ Br(B_s \rightarrow \mu^+ \mu^-) \ \approx \ 0.75 \ \mbox{of the SM value, but here it's } 1\sigma \ \mbox{effect only} \end{array}$

• $B_s \to \gamma \ell^+ \ell^-$ contains an additional α_{em} in the branching ratio but doesn't have the chirality constraint and thus is comparable to $B_s \to \mu^+ \mu^-$

Effective Theory of B-physics

Wilson expansion:

$$H_{eff} = \frac{G_F}{\sqrt{2}} V_{tb} V_{tq}^* \sum_i c_i(\mu) O_i(\mu)$$

- W, t are integrated out
- *c*-quarks are dynamical

Effective Theory of B-physics

Effective Hamiltonian for $b \to d\ell^+ \ell^-$ is

$$H_{\text{eff}}^{b \to d\ell^+\ell^-} = \frac{G_F}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} V_{tb} V_{tq}^* \Big[-2im_b \frac{C_{7\gamma}(\mu)}{q^2} \cdot \bar{d}\sigma_{\mu\nu} q^\nu \left(1+\gamma_5\right) b \cdot \bar{\ell}\gamma^\mu \ell + \\ + \frac{C_{9V}^{\text{eff}}(\mu, q^2)}{q^2} \cdot \bar{d}\gamma_\mu \left(1-\gamma_5\right) b \cdot \bar{\ell}\gamma^\mu \ell + \frac{C_{10A}(\mu)}{q} \cdot \bar{d}\gamma_\mu \left(1-\gamma_5\right) b \cdot \bar{\ell}\gamma^\mu \gamma_5 \ell \Big]$$

The amplitude

$$A_{B \to \gamma l^+ l^-} = \langle \gamma(k, \epsilon), \, \ell^+(p_1), \, \ell^-(p_2) \left| H_{\text{eff}}^{b \to d\ell^+ \ell^-} \right| B(p) \rangle$$

takes into account nonperturbative QCD effects related to B-mesons.

Contributions

 $O_{7\gamma}$, O_{9V} , O_{10AV} : dashed circles denote the $b \rightarrow d\gamma$ operator $O_{7\gamma}$ and solid circles denote the $b \rightarrow d\ell^+ \ell^-$ operators O_{9V} and O_{10AV} :

Bremsstrahlung:

Weak annihilation diagrams:

Amplitude

$$A_{\mu}^{(1)} = \langle \gamma(k,\,\epsilon),\,\ell^+(p_1),\,\ell^-(p_2) \left| H_{\text{eff}}^{b\to d\ell^+\ell^-} \right| B(p) \rangle = \frac{G_F}{\sqrt{2}} V_{tb} V_{tq}^* \frac{\alpha_{\text{em}}}{2\pi} e \,\epsilon_{\alpha}^*$$

$$\times \left[\frac{2 C_{7\gamma}(\mu)}{q^2} m_b \left(\varepsilon_{\mu\alpha\xi\eta} p_{\xi} k_{\eta} F_{TV}(q^2, 0) - i \left(g_{\mu\alpha} pk - p_{\alpha} k_{\mu}\right) F_{TA}(q^2, 0)\right) \bar{\ell}(p_2) \gamma_{\mu} \ell(-p_1)\right]$$

$$C_{9V}^{\rm eff}(\mu,q^2) \left(\varepsilon_{\mu\alpha\xi\eta} p_{\xi} k_{\eta} \frac{F_V(q^2)}{M_B} - i \left(g_{\mu\alpha} pk - p_{\alpha} k_{\mu} \right) \frac{F_A(q^2)}{M_B} \right) \bar{\ell}(p_2) \gamma_{\mu} \ell(-p_1) +$$

$$C_{10A}(\mu)\left(\varepsilon_{\mu\alpha\xi\eta}p_{\xi}k_{\eta}\frac{F_{V}(q^{2})}{M_{B}}-i\left(g_{\mu\alpha}pk-p_{\alpha}k_{\mu}\right)\frac{F_{A}(q^{2})}{M_{B}}\right)\bar{\ell}(p_{2})\gamma_{\mu}\gamma_{5}\ell(-p_{1})\bigg].$$

Form Factors

$$\langle \gamma(k,\,\epsilon)|\bar{d}\gamma_{\mu}\gamma_{5}b|B(p)\rangle = i\,e\,\epsilon_{\alpha}^{*}\left(g_{\mu\alpha}\,pk-p_{\alpha}k_{\mu}\right)\,\frac{F_{A}(q^{2})}{M_{B}},$$

$$\langle \gamma(k,\,\epsilon)|\bar{d}\gamma_{\mu}b|B(p)\rangle = e\,\epsilon_{\alpha}^{*}\,\epsilon_{\mu\alpha\xi\eta}p_{\xi}k_{\eta}\,\frac{F_{V}(q^{2})}{M_{B}},$$

 $\langle \gamma(k,\,\epsilon) | \bar{d}\sigma_{\mu\nu}\gamma_5 b | B(p) \rangle \, (p-k)^{\nu} = e \,\epsilon^*_{\alpha} \left[g_{\mu\alpha} \, pk - p_{\alpha} k_{\mu} \right] \, F_{TA}(q^2,0),$

$$\langle \gamma(k,\,\epsilon) | \bar{d}\sigma_{\mu\nu} b | B(p) \rangle \, (p-k)^{\nu} = i \, e \, \epsilon^*_{\alpha} \epsilon_{\mu\alpha\xi\eta} p_{\xi} k_{\eta} \, F_{TV}(q^2,0).$$

Form factors: constraints in QCD

$$F_i(q^2,k^2)$$
, $4m_\ell^2 \le q^2 \le M_B^2$

- Electromagnetic gauge invariance \implies constraints at $q^2 = 0$ (q^2 is the invariant mass of the lepton pair)
- Large Energy Effective Theory (LEET) \Longrightarrow $F_A(E_{\gamma}) \approx F_V(E_{\gamma}) \approx F_{TA}(E_{\gamma}) \approx F_{TV}(E_{\gamma})$ for $E_{\gamma} >> \Lambda_{QCD}$, $E_{\gamma} = \frac{M_B^2 - q^2}{2M_B}$
- \blacksquare Locations of meson singularities at $q^2 \geq M_B^2 \Longrightarrow$ constraints at $q^2 = M_B^2$
- Form factors related to photon emission by heavy quark are $1/m_Q$ suppressed compared to those with $\gamma\text{-emission}$ by light quark

Relativistic Quark Model

We make use of dispersion approach based on constituent quark picture: All hadron observables are given by dispersion representations in terms of the hadron relativistic wave functions and the spectral densities of Feynman diagrams with constituent quarks in the loops.

• Decay constants: $f_B = \int ds \phi_B(s) \rho(s)$

- Meson-meson form factors: $F_{M_1 \to M_2}(q^2) = \int ds_1 \phi_1(s_1) ds_2 \phi_2(s_2) \Delta(s_1, s_2, q^2)$
- Meson-photon transition form factors: $F(q^2, k^2) = \int ds \phi(s) \frac{ds' \Delta(s, s', q_2^2)}{s' q_1^2}$
- Wave function $(\phi(s) \sim e^{-\frac{k^2}{2\beta^2}})$ is normalized by the condition that electromagnetic form factor is 1 at $q^2 = 0$: $F_{el}(q^2 = 0) = 1$

Relativistic Quark Model

In leading and subleading order in $1/m_Q$:

- The meson-meson transition form factors satisfy constraints from HQET for heavy-to-heavy transitions
- The meson-meson and meson-photon form factors satisfy constraints from LEET for heavy-to-light transitions

Fixing parameters:

- We use a simple Gaussian parametrization for $\phi(s)$ ($\phi(s) \sim e^{-\frac{k^2}{2\beta^2}}$)
- Constituent quark masses and the parameter of the wave function are fixed by the condition that meson decay constants reproduce well-known results from lattice QCD and sum rules.

Numerical Estimates

Numerical Estimates

lepton	e	μ	au
$Br\left(B_d \to \ell^+ \ell^- \gamma\right) \times 10^{10}$	5.41	2.22	3.27
$Br\left(B_s \to \ell^+ \ell^- \gamma\right) \times 10^9$	20.0	13.5	11.3
$Br(B_d \to \ell^+ \ell^- \gamma) \times 10^{10}$ [1]	1.01	0.66	3.39
$Br(B_s \to \ell^+ \ell^- \gamma) \times 10^9$ [1]	3.30	2.16	11.6
$Br\left(B_s \to \ell^+ \ell^- \gamma\right) \times 10^9$ [2]	20	12	—

- [1] G.Q.Geng, C.C.Lih and W.M.Zhang, *Phys. Rev.* D 62, 074017 (2000).
- [2] Yu.Dincer and L.M.Sehgal, *Phys. Lett.* B **521**, 7 (2001)

Summary

- We obtained predictions for the branching ratios of $B_{d,s}\to \gamma l^+l^-$ decays in the Standard Model
- We used reliable form factors that satisfy all known QCD constraints.
- We took into accout contributions of light vector resonances.

Prospects:

- B to four leptons decays
- Similar non-SM semileptonic decays

Thank you for your attention!

BACK-UP

15 of 17

Relativistic Quark Model

Form-factors are represented in the form of dispersion integrals over the invariant mass s.

 $A^{\alpha\mu}(q^2) \sim \varepsilon^{\mu\nu pq} \int_{(m_1+m_2)^2}^{\infty} ds \frac{\phi(s)}{(s-q^2)} \rho(s, m_1^2, m_2^2)$

Form Factors

• For the form factors F_V and F_A the result of the direct calculation in the relativistic dispersion approach was used.

$$\frac{1}{M_B}F_V^{(1)}(q^2) = -\frac{\sqrt{N_c}}{4\pi^2} \int_{(m_1+m_2)^2}^{\infty} \frac{ds\phi_B(s)}{(s-q^2)}\rho_+(s,m_1,m_2).$$

$$\frac{1}{M_B}F_A^{(1)}(q^2) \quad = \quad \frac{\sqrt{N_c}}{4\pi^2} \int\limits_{(m_1+m_2)^2}^{\infty} \frac{ds \, \phi_B(s)}{(s-q^2)} \left(\rho_+(s,m_1,m_2) + 2\frac{m_1-m_2}{s-q^2}\rho_{k_\perp^2}(s,m_1,m_2)\right),$$

$$\begin{split} \rho_+(s,m_1,m_2) &= (m_2-m_1) \frac{\lambda^{1/2}(s,m_1^2,m_2^2)}{s} + m_1 \log \left(\frac{s+m_1^2-m_2^2+\lambda^{1/2}(s,m_1^2,m_2^2)}{s+m_1^2-m_2^2-\lambda^{1/2}(s,m_1^2,m_2^2)} \right), \\ \rho_{k_\perp^2}(s,m_1,m_2) &= \frac{s+m_1^2-m_2^2}{2s} \lambda^{1/2}(s,m_1^2,m_2^2) - m_1^2 \log \left(\frac{s+m_1^2-m_2^2+\lambda^{1/2}(s,m_1^2,m_2^2)}{s+m_1^2-m_2^2-\lambda^{1/2}(s,m_1^2,m_2^2)} \right) \end{split}$$

17 of 17