Differential equation approach to perturbative calculations.

Roman N. Lee

Budker Institute of Nuclear Physics, Novosibirsk

HSQCD-2016, PNPI, Gatchina, 27 June - 1 July, 2016

◆ ロ ▶ → 何

Outline

2 [Reduction to](#page-14-0) ε -form

3 [Examples of application](#page-35-0)

 2990

Why multiloop integrals?

Perturbative calculations

Technically, perturbative calculations are reduced to the calculation of (multi)loop integrals.

Multiloop integrals

- Physical applications
- Beautiful mathematics
- Open problems

Multiloop calculations

Problem

- Multiloop people often prefer many loops and one scale.
- Phenomenological applications often require a few loops but many prefer many loops and

one scale.

Phenomenological

applications often require

a few loops but many

scales.

 ← ロ ▶ → 何 ▶ → ヨ ▶

 QQ

Multiloop calculations

Problem

- Multiloop people often prefer many loops and one scale.
- Phenomenological applications often require a few loops but many prefer many loops and

one scale.

Phenomenological

applications often require

a few loops but many

scales.

 \leftarrow \Box \rightarrow \rightarrow

Multiscale problems: IBP+DE approach.

 QQ

[Introduction](#page-5-0)

IBP reduction (Chetyrkin&Tkachov 1981)

Scalar integrals family labeled by **n**

$$
J(\mathbf{n}) = \int d^d l_1 \dots d^d l_L j(\mathbf{n}) = \int \frac{d^d l_1 \dots d^d l_L}{\pi^{\frac{Ld}{2}} D_1^{n_1} \dots D_N^{n_N}}
$$

 D_1 ,...,*D_M* — denominators of the diagram, D_{M+1}, \ldots, D_N —numerators ($n_{M+1}, \ldots, n_N \leq 0$).

E external momenta

(□) (何) (□) (□

[Introduction](#page-6-0)

IBP reduction (Chetyrkin&Tkachov 1981)

Scalar integrals family labeled by **n**

$$
J(\mathbf{n}) = \int d^d l_1 \dots d^d l_L j(\mathbf{n}) = \int \frac{d^d l_1 \dots d^d l_L}{\pi^{\frac{Ld}{2}} D_1^{n_1} \dots D_N^{n_N}}
$$

 D_1 ,...,*D_M* — denominators of the diagram, D_{M+1}, \ldots, D_N —numerators ($n_{M+1}, \ldots, n_N \leq 0$).

p_2 *p₁ pE* \overline{p}_0 =- p_1 - p_2 ...-

E external momenta

Basic idea of IBP reduction

- Explicit differentiation in (IBP&LI) gives recurrence relations between integrals $J(n)$ with different **n**.
- Using these relations, any integral can be reduced to finite number of *master integrals*.

IBP

$$
\int d^d l_1 \dots d^d l_L \frac{\partial}{\partial l_i} \cdot q_j j(\mathbf{n}) = 0
$$

LI

$$
p_{1\mu}p_{2\nu}\sum_{e}p_{e}^{[\mu}\partial_{e}^{\nu]}J=0
$$

Differential equations(Kotikov,1991;Remiddi, 1997)

Differentiating the column-vector J of master integrals with respect to mass or some invariant and performing IBP reduction we obtain differential equations

 $\partial \mathbf{J}(x)/\partial x = M(x, \varepsilon) \mathbf{J}(x)$

with $\mathbb{M}(x,\varepsilon)$ being a rational matrix of x and ε .

Differential equations(Kotikov,1991;Remiddi, 1997)

Differentiating the column-vector J of master integrals with respect to mass or some invariant and performing IBP reduction we obtain differential equations

$$
\partial \mathbf{J}(x) / \partial x = \mathbb{M}(x, \varepsilon) \mathbf{J}(x)
$$

with $\mathbb{M}(x,\varepsilon)$ being a rational matrix of x and ε .

Recent remarkable observation (Henn, 2013)

By a suitable change of functions $J(x) \to \mathbb{T}(x, \varepsilon) \tilde{J}(x)$, it is possible to transform equation to ε-factorized form (ε-form)

$$
\partial \tilde{\mathbf{J}}(x) / \partial x = \varepsilon \mathbb{S}(x) \tilde{\mathbf{J}}(x)
$$

Moreover, rational matrix $\mathcal{S}(x)$ has only simple poles and falls off at infinity $(\mathbb{S}(x) = \sum_i \mathbb{S}_i/(x - x_i))$, i.e., the system is globally *Fuchsian*.

 QQ

 4 ロ } 4 \overline{r} } 4 \overline{z} } 4 \overline{z} }

Benefits of ε-form

• Given the equation

$$
\partial \mathbf{J}(\boldsymbol{\varepsilon},x) / \partial x = \varepsilon \mathbb{S}(x) \mathbf{J}(\boldsymbol{\varepsilon},x)
$$

it is easy to find coefficients of expansion $\mathbf{J}(\varepsilon, x) = \sum \mathbf{J}_n(x) \varepsilon^n$ 1 by 1:

$$
\mathbf{J}_n(x) = \int dx \mathbb{S}(x) \mathbf{J}_{n-1}(x) .
$$

The coefficients are automatically expressed in terms of Goncharov polylogs and obey the property of uniform transcendentality.

∢ ロ ▶ ィ 何

Benefits of ε-form

• Given the equation

$$
\partial \mathbf{J}(\boldsymbol{\varepsilon},x) / \partial x = \varepsilon \mathbb{S}(x) \mathbf{J}(\boldsymbol{\varepsilon},x)
$$

it is easy to find coefficients of expansion $\mathbf{J}(\varepsilon, x) = \sum \mathbf{J}_n(x) \varepsilon^n$ 1 by 1:

$$
\mathbf{J}_n(x) = \int dx \mathbb{S}(x) \mathbf{J}_{n-1}(x) .
$$

The coefficients are automatically expressed in terms of Goncharov polylogs and obey the property of uniform transcendentality.

• For many variables if we secure simultaneous ε -form $\partial J(\varepsilon,\vec{x})/\partial x_i = \varepsilon S_i(\vec{x})J(\varepsilon,\vec{x})$, the integrability condition splits into two $\partial_i S_i = \partial_i S_j$ and $S_i S_i = S_i S_j$ and the system can be rewritten as

$$
d\mathbf{J} = \varepsilon d\mathbb{A}\mathbf{J}.
$$

 $2Q$

イロト イ何 トイヨ トイヨ

Benefits of ε-form

• Given the equation

$$
\partial \mathbf{J}(\boldsymbol{\varepsilon},x) / \partial x = \varepsilon \mathbb{S}(x) \mathbf{J}(\boldsymbol{\varepsilon},x)
$$

it is easy to find coefficients of expansion $\mathbf{J}(\varepsilon, x) = \sum \mathbf{J}_n(x) \varepsilon^n$ 1 by 1:

$$
\mathbf{J}_n(x) = \int dx \mathbb{S}(x) \mathbf{J}_{n-1}(x) .
$$

The coefficients are automatically expressed in terms of Goncharov polylogs and obey the property of uniform transcendentality.

• For many variables if we secure simultaneous ε -form $\partial J(\varepsilon,\vec{x})/\partial x_i = \varepsilon S_i(\vec{x})J(\varepsilon,\vec{x})$, the integrability condition splits into two ∂_i S_{*i*} = ∂_i S_{*i*} and S_{*i*}S_{*i*} = S_{*i*}S_{*i*} and the system can be rewritten as

$$
d\mathbf{J} = \varepsilon d\mathbb{A}\mathbf{J}.
$$

Usually the form of the system is drastically s[im](#page-10-0)[pli](#page-12-0)[fi](#page-8-0)[e](#page-9-0)[d](#page-11-0)[.](#page-12-0)

Example

Original matrix:

$$
\left(\begin{array}{cccccc} \frac{(x^2+1)(2\epsilon-1)}{(x-1)x(x+1)} & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{2(\epsilon-1)\left(\epsilon x^4-x^4+10\epsilon x^2-8x^2+\epsilon-1\right)}{(x-1)x(x+1)(x^2+1)(3\epsilon-2)} & \cdots & \cdots & 0 & 0 & 0 & 0\\ 0 & -\frac{(4\epsilon-3)\left(\epsilon x^4-2\epsilon x^2+4x^2+\epsilon\right)}{(x-1)x(x+1)(x^2+1)} & \cdots & \cdots & 0 & 0 & 0 & 0\\ 0 & \frac{2\epsilon^3 x^8-3\epsilon^2 x^8+\epsilon x^8+16\epsilon^3 x^6-84\epsilon^2 x^6+102\epsilon x^6-36\epsilon^5-36\epsilon^3 x^4-18\epsilon^2 x^4+\cdots}{6(x-1)x^3(x+1)(x^2+1)(\epsilon-1)(3\epsilon-2)} & \cdots & \cdots & 0 & 0 & 0 & 0\\ \frac{2(x-1)(x+1)\epsilon(2\epsilon-1)}{x^2(4\epsilon-1)} & 0 & 0 & 0 & \cdots & \cdots & 0 & 0\\ 0 & \frac{\epsilon^2 x^4-\epsilon x^4-2\epsilon^2 x^2+18\epsilon x^2-12x^2+\epsilon^2-\epsilon}{2(x-1)x(x+1)(x^2+1)(2\epsilon-1)} & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0\\ 0 & -\frac{(x-1)(x+1)\left(\epsilon^2 x^4-\epsilon x^4-26\epsilon^2 x^2+34\epsilon x^2-12x^2+\epsilon^2-\epsilon\right)}{2x^3(x^2+1)(3\epsilon-2)} & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0\\ \end{array}\right)
$$

 299

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경

Example

After the change of functions:

$$
\varepsilon \begin{pmatrix}\n2\frac{(x^2+1)}{(x^2-1)x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{2(x^2+1)}{(x^2-1)x} & \frac{1}{x} & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{4}{x} & 0 & -\frac{1}{x} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{12}{x} & -\frac{6(x^2+1)}{(x^2-1)x} & 0 & 0 & 0 & 0 \\
\frac{1}{x} & 0 & 0 & 0 & \frac{2}{x} & \frac{2(x^2+1)}{(x^2-1)x} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{2}{x} & \frac{2(x^2+1)}{(x^2-1)x} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{2(x^2+1)}{(x^2-1)x} & -\frac{2}{x} \\
0 & \frac{4}{x} & 0 & \frac{1}{x} & 0 & 0 & \frac{2}{x} & -\frac{2(x^2-1)}{(x^2+1)x}\n\end{pmatrix}
$$

 299

K ロト K 御 ト K 君 ト K 君 ト

Problem formulation

Given a system

$$
\partial \mathbf{J}(x) / \partial x = \mathbb{M}(x, \varepsilon) \mathbf{J}(x)
$$

is it possible and how to find a change of functions reducing the system to ε-form

$$
\partial \tilde{\mathbf{J}}(x) / \partial x = \varepsilon \sum_{k} \frac{\mathbb{S}_{k}}{x - x_{k}} \tilde{\mathbf{J}}(x),
$$

i.e., is it possible and how to find such $\mathbb{T}(x, \varepsilon)$ that

$$
\mathbb{T}^{-1}\mathbb{MT} - \mathbb{T}^{-1}\partial_x \mathbb{T} = \varepsilon \sum_k \frac{\mathbb{S}_k}{x - x_k}
$$
?

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n}$

◆ ロ ▶ → 何

Problem formulation

Given a system

 ∂ **J**(*x*)/ ∂ *x* = M(*x*, ε)**J**(*x*)

is it possible and how to find a change of functions reducing the system to ε-form

$$
\partial \tilde{\mathbf{J}}(x) / \partial x = \varepsilon \sum_{k} \frac{\mathbb{S}_{k}}{x - x_{k}} \tilde{\mathbf{J}}(x),
$$

i.e., is it possible and how to find such $\mathbb{T}(x, \varepsilon)$ that

$$
\mathbb{T}^{-1}\mathbb{MT}-\mathbb{T}^{-1}\partial_x\mathbb{T}=\varepsilon\sum_k\frac{\mathbb{S}_k}{x-x_k}?
$$

Approaches so far:

- Using ad hoc arguments, e.g., finding homogeneous integrals from Feynman parametrization (Henn, 2013, 2014).
- Applying a regular procedure when luckily hitting a special form of the initial matrix M (Gehrmann et al., 2014), (Argeri et al., 2014). E.g., when $\mathbb{M}(x, \varepsilon) = \mathbb{M}_0(x) + \varepsilon \mathbb{M}_1(x)$

Algorithm of reduction to ε -form (R.L. 2015)

Stage 1. Eliminating higher-order poles

Input: Rational matrix $\mathbb{M}(x, \varepsilon)$

Output: Rational matrix with only simple poles (*Fuchsian* singularities) on the extended complex plane, $\mathbb{M}(x, \varepsilon) = \sum_{k} \frac{\mathbb{M}_k(\varepsilon)}{x - x_k}$ $\frac{\sqrt{x} + \sqrt{x}}{x - x_k}$.

Stage 2. Normalizing eigenvalues

Input: Matrix from the previous step, $\mathbb{M}(x,\varepsilon) = \sum_k \frac{\mathbb{M}_k(\varepsilon)}{x - x_k}$. *x*−*x^k* Output: Matrix of the same form, but with the eigenvalues of all M*^k* (ε) confined to unit interval $(-1/2,1/2]$.

Input: Matrix from the previous step. Output: Matrix in ε -form, $\mathbb{M}(x,\varepsilon) = \varepsilon \sum_{k} \frac{S_k}{x-1}$ *x*−*x^k*

• Stages 1 and 2 look like classical problems of ODE theory — are they solved by mathematicians?

イロト イ何 ト イヨ ト イヨ

- • Stages 1 and 2 look like classical problems of ODE theory — are they solved by mathematicians?
- Almost. In particular, Barkatou&Pfluegel algorithm eliminates higher-order poles in all **finite points** giving $\mathbb{M}(x) = \sum_k \frac{\mathbb{M}_k}{x-x}$ $\frac{N\mathbb{I}_{k}}{x-x_{k}}+P(x),$ where $P(x)$ is a polynomial.

- • Stages 1 and 2 look like classical problems of ODE theory — are they solved by mathematicians?
- Almost. In particular, Barkatou&Pfluegel algorithm eliminates higher-order poles in all **finite points** giving $\mathbb{M}(x) = \sum_k \frac{\mathbb{M}_k}{x-x}$ $\frac{N\mathbb{I}_{k}}{x-x_{k}}+P(x),$ where $P(x)$ is a polynomial.
- Why not try to do better get rid of $P(x)$?

- • Stages 1 and 2 look like classical problems of ODE theory — are they solved by mathematicians?
- Almost. In particular, Barkatou&Pfluegel algorithm eliminates higher-order poles in all **finite points** giving $\mathbb{M}(x) = \sum_k \frac{\mathbb{M}_k}{x-x}$ $\frac{N\mathbb{I}_{k}}{x-x_{k}}+P(x),$ where $P(x)$ is a polynomial.
- Why not try to do better get rid of $P(x)$?
- Not always possible due to negative solution of the Riemann-Hilbert problem by Bolibrukh(Bolibrukh,1989).

- • Stages 1 and 2 look like classical problems of ODE theory — are they solved by mathematicians?
- Almost. In particular, Barkatou&Pfluegel algorithm eliminates higher-order poles in all **finite points** giving $\mathbb{M}(x) = \sum_k \frac{\mathbb{M}_k}{x-x}$ $\frac{N\mathbb{I}_{k}}{x-x_{k}}+P(x),$ where $P(x)$ is a polynomial.
- Why not try to do better get rid of $P(x)$?
- Not always possible due to negative solution of the Riemann-Hilbert problem by Bolibrukh(Bolibrukh,1989).
- No algorithms for global reduction (including infinity point) so far.

 Ω

≮ロト ⊀何ト ⊀ ヨト ∢ ヨト

Balance transformation

Both reduction to Fuchsian form and normalization of the matrix residues are based on the following transformation

$$
\mathbb{T}(x) = \mathscr{B}(\mathbb{P}, x_1, x_2 | x) \stackrel{\text{def}}{=} \overline{\mathbb{P}} + \frac{x - x_2}{x - x_1} \mathbb{P},
$$

where P is some projector and $\overline{P} = I - P$. When $x_1 = \infty$ or $x_2 = \infty$ omit denominator or numerator, respectively.

Balance transformation

Both reduction to Fuchsian form and normalization of the matrix residues are based on the following transformation

$$
\mathbb{T}(x) = \mathscr{B}(\mathbb{P}, x_1, x_2 | x) \stackrel{\text{def}}{=} \overline{\mathbb{P}} + \frac{x - x_2}{x - x_1} \mathbb{P},
$$

where P is some projector and $\overline{P} = I - P$. When $x_1 = \infty$ or $x_2 = \infty$ omit denominator or numerator, respectively.

• Balance transformation changes properties (pole order and eigenvalues of matrix residue) of the differential system only at two points $x = x_1$ and $x = x_2$.

Balance transformation

Both reduction to Fuchsian form and normalization of the matrix residues are based on the following transformation

$$
\mathbb{T}(x) = \mathscr{B}(\mathbb{P}, x_1, x_2 | x) \stackrel{\text{def}}{=} \overline{\mathbb{P}} + \frac{x - x_2}{x - x_1} \mathbb{P},
$$

where P is some projector and $\overline{P} = I - P$. When $x_1 = \infty$ or $x_2 = \infty$ omit denominator or numerator, respectively.

- Balance transformation changes properties (pole order and eigenvalues of matrix residue) of the differential system only at two points $x = x_1$ and $x = x_2$.
- Classical algorithms put $x_2 = \infty$ and try to construct P improving system property at *x*1.

 Ω

Balance transformation

Both reduction to Fuchsian form and normalization of the matrix residues are based on the following transformation

$$
\mathbb{T}(x) = \mathscr{B}(\mathbb{P}, x_1, x_2 | x) \stackrel{\text{def}}{=} \overline{\mathbb{P}} + \frac{x - x_2}{x - x_1} \mathbb{P},
$$

where P is some projector and $\overline{P} = I - P$. When $x_1 = \infty$ or $x_2 = \infty$ omit denominator or numerator, respectively.

- Balance transformation changes properties (pole order and eigenvalues of matrix residue) of the differential system only at two points $x = x_1$ and $x = x_2$.
- Classical algorithms put $x_2 = \infty$ and try to construct P improving system property at *x*1.
- In a long sequence of such transformations the system is reduced in all finit[e](#page-21-0) points, but behaviour at $x = \infty$ is **totally [sp](#page-24-0)[oil](#page-26-0)e[d](#page-22-0)**[.](#page-25-0) QQQ

Scrutinizing Barkatou&Pfluegel algortihm.

• What properties of $\mathbb P$ are important?

 4 O \rightarrow 4 \overline{r} \rightarrow 4 \overline{z} \rightarrow 4

Scrutinizing Barkatou&Pfluegel algortihm.

- What properties of $\mathbb P$ are important?
- Only some properties of its image $\mathcal{U} = \text{Img}\mathbb{P}$.

4 0 8 4

ヨト 4

 QQ

Scrutinizing Barkatou&Pfluegel algortihm.

- What properties of $\mathbb P$ are important?
- Only some properties of its image $\mathcal{U} = \text{Img}\mathbb{P}$.
- \bullet But the kernel (or, alternatively, co-image) of $\mathbb P$ can be chosen almost arbitrarily! Requirement: Img $\mathbb{P} \cap \ker \mathbb{P} = \{0\}.$

 Ω

Scrutinizing Barkatou&Pfluegel algortihm.

- What properties of $\mathbb P$ are important?
- Only some properties of its image $\mathcal{U} = \text{Im} \mathfrak{L} \mathbb{P}$.
- \bullet But the kernel (or, alternatively, co-image) of $\mathbb P$ can be chosen almost arbitrarily! Requirement: Img $\mathbb{P} \cap \ker \mathbb{P} = \{0\}.$
- Idea of global reduction: use the above freedom to keep system properties at x_2 under control.

 Ω

After Stage 2 we should have

$$
\mathbb{M}(x,\varepsilon)=\sum_{k}\frac{\mathbb{M}_{k}(\varepsilon)}{x-x_{k}},
$$

such that all eigenvalues of all "residues" $M_k(\varepsilon)$ are $\infty \varepsilon$. We need to find an *x*-independent transformation $\mathbb{T}(\varepsilon)$, such that

$$
\mathbb{T}^{-1}\left(\boldsymbol{\varepsilon}\right) \mathbb{M}_{k}\left(\boldsymbol{\varepsilon}\right) \mathbb{T}\left(\boldsymbol{\varepsilon}\right) = \boldsymbol{\varepsilon} \mathbb{S}_{k}
$$

How can we do it without knowing \mathcal{S}_k in r.h.s.?

 \triangleright 4 \equiv \triangleright 4

After Stage 2 we should have

$$
\mathbb{M}(x,\varepsilon)=\sum_{k}\frac{\mathbb{M}_{k}(\varepsilon)}{x-x_{k}},
$$

such that all eigenvalues of all "residues" $\mathbb{M}_k(\varepsilon)$ are $\propto \varepsilon$. We need to find an *x*-independent transformation $\mathbb{T}(\varepsilon)$, such that

$$
\mathbb{T}^{-1}\left(\boldsymbol{\varepsilon}\right) \mathbb{M}_{k}\left(\boldsymbol{\varepsilon}\right) \mathbb{T}\left(\boldsymbol{\varepsilon}\right) = \boldsymbol{\varepsilon} \mathbb{S}_{k}
$$

$$
\mathbb{T}^{-1}(\varepsilon) \, \frac{\mathbb{M}_k(\varepsilon)}{\varepsilon} \mathbb{T}(\varepsilon) = \mathbb{S}_k = \mathbb{T}^{-1}(\mu) \, \frac{\mathbb{M}_k(\mu)}{\mu} \mathbb{T}(\mu)
$$

R.N. Lee (BINP, Novosibirsk) [DE approach](#page-0-0) DE approach HSQCD-2016 14/22

 $2Q$

After Stage 2 we should have

$$
\mathbb{M}(x,\varepsilon)=\sum_{k}\frac{\mathbb{M}_{k}(\varepsilon)}{x-x_{k}},
$$

such that all eigenvalues of all "residues" $\mathbb{M}_k(\varepsilon)$ are $\propto \varepsilon$. We need to find an *x*-independent transformation $\mathbb{T}(\varepsilon)$, such that

$$
\mathbb{T}^{-1}\left(\boldsymbol{\varepsilon}\right) \mathbb{M}_{k}\left(\boldsymbol{\varepsilon}\right) \mathbb{T}\left(\boldsymbol{\varepsilon}\right) = \boldsymbol{\varepsilon} \mathbb{S}_{k}
$$

$$
\mathbb{T}\left(\boldsymbol{\epsilon}\right) \times\left(\mathbb{T}^{-1}\left(\boldsymbol{\epsilon}\right)\frac{\mathbb{M}_{k}\left(\boldsymbol{\epsilon}\right)}{\boldsymbol{\epsilon}}\mathbb{T}\left(\boldsymbol{\epsilon}\right)=\mathbb{S}_{k}=\mathbb{T}^{-1}\left(\boldsymbol{\mu}\right)\frac{\mathbb{M}_{k}\left(\boldsymbol{\mu}\right)}{\boldsymbol{\mu}}\mathbb{T}\left(\boldsymbol{\mu}\right)\right)\times\mathbb{T}^{-1}\left(\boldsymbol{\mu}\right)
$$

R.N. Lee (BINP, Novosibirsk) [DE approach](#page-0-0) DE approach HSQCD-2016 14/22

 $2Q$

After Stage 2 we should have

$$
\mathbb{M}(x,\varepsilon)=\sum_{k}\frac{\mathbb{M}_{k}(\varepsilon)}{x-x_{k}},
$$

such that all eigenvalues of all "residues" $\mathbb{M}_k(\varepsilon)$ are $\propto \varepsilon$. We need to find an *x*-independent transformation $\mathbb{T}(\varepsilon)$, such that

$$
\mathbb{T}^{-1}\left(\boldsymbol{\varepsilon}\right) \mathbb{M}_{k}\left(\boldsymbol{\varepsilon}\right) \mathbb{T}\left(\boldsymbol{\varepsilon}\right) = \boldsymbol{\varepsilon} \mathbb{S}_{k}
$$

Linear system for matrix elements of $\mathbb{T}(\varepsilon,\mu) = \mathbb{T}(\varepsilon) \mathbb{T}^{-1}(\mu)$ $\mathbb{M}_{k}\left(\boldsymbol{\varepsilon}\right)$ $\frac{\partial \chi_{k}(\boldsymbol{\varepsilon})}{\boldsymbol{\varepsilon}} \mathbb{T}(\boldsymbol{\varepsilon}, \mu) \, = \, \mathbb{T}(\boldsymbol{\varepsilon}, \mu) \, \frac{\mathbb{M}_{k}(\mu)}{\mu}$ μ

R.N. Lee (BINP, Novosibirsk) [DE approach](#page-0-0) HSQCD-2016 14/22

 $2Q$

What may go wrong

- \bullet At stage 1 and 2 we might fail to construct $\mathbb P$ with required properties due to the restriction Img $\mathbb{P} \cap \ker \mathbb{P} = \{0\}$. This is naturally associated with obstructions to positive solution of Hilbert's 21st problem. In particular, if some monodromy matrix is diagonalizable, we can always balance with the corresponding point.
- Eigenvalues of matrix residues after Stage 1 might be not of the form $n + \alpha \varepsilon$. In particular, it often happens that *n* is half-integer in a pair of points x_1 and x_2 . One can then get rid of half-integer *n* by passing to $y = \sqrt{(x-x_1)/(x-x_2)}$, so that $x = (x_1 - x_2y^2)/(1 - y^2)$ is a rational substitution.
- Third step might result in degenerate matrix $\mathbb{T}(\varepsilon,\mu)$ for any μ . E.g. $\mathbb{T}(\varepsilon,\mu)=0.$
- Computational complexity might be overwhelming. One should use block-triangular structure of the equations.

 Ω

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

Example applications of ε -form

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900 Q

Master integrals

◆ ロ ▶ → 何

 $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

Master integrals

New functions \tilde{P} , \tilde{B} , \tilde{R}

4 0 1 4

$$
P = \frac{\sqrt{\Delta}}{s_1 s_2 s_3 s_4 s_5} \left(\widetilde{P} - \sum_{i=1}^5 \frac{1}{2} \left(1 - \frac{r_i}{\sqrt{\Delta}} \right) \widetilde{B}_i \right),
$$

$$
B_i = \frac{1}{s_{i+2} s_{i-2}} \widetilde{B}_i, \quad R_i = \frac{\varepsilon}{2(1-2\varepsilon)} \widetilde{R}_i.
$$

- 4 三 ト 4

 QQQ

Master integrals p_1 p² $\binom{p_3}{p_4}$ P $\overline{p}_5 \prec B_1 \succ \setminus B_2 \succ \setminus B_3 \setminus \setminus B_4 \setminus \setminus B_5$ R_1 λR_2 (R_3) (R_4) λR_5 New functions \tilde{P} , \tilde{B} , \tilde{R} *P* = $\sqrt{\Delta}$ *s*1*s*2*s*3*s*4*s*⁵ $\left(\widetilde{P}-\sum_{i=1}^5\right)$ 1 2 $\left(1 - \frac{r_i}{\sqrt{\Delta}}\right)$ $\left(\widetilde{B}_{i}\right),$ $B_i = \frac{1}{2i}$ $\frac{1}{s_{i+2}s_{i-2}}\widetilde{B}_i$, $R_i = \frac{\varepsilon}{2(1-\varepsilon)}$ $\frac{1}{2(1-2\varepsilon)}R_i$.

Equation for new functions $(\epsilon$ -form)

$$
d\widetilde{P} = -\varepsilon \left\{ \widetilde{P}d\left(\log S\right) + \sum_{i=1}^5 \left[-\widetilde{B}_id\left(\log\left(1+\frac{r_i}{\sqrt{\Delta}}\right)\right) + \widetilde{R}_id\left(\log\frac{(\sqrt{\Delta}+r_i)(r_{i+2}+r_{i-2})}{(\sqrt{\Delta}+r_{i+2})(\sqrt{\Delta}+r_{i-2})}\right) \right] \right\},\,
$$

 $2Q$

Master integrals \mathbb{P}^2 $\binom{p_3}{p_4}$ P $\left[\begin{array}{ccc} P_5 & \diagup \diagup \diagdown B_1 \diagdown \diagdown \diagdown B_2 \diagdown \diagdown \diagdown B_3 \end{array}\right]$ B_4 $\left[\begin{array}{ccc} B_4 & \diagup B_5 \end{array}\right]$ R¹ R² R³ R⁴ R⁵ New functions \tilde{P} , \tilde{B} , \tilde{R} *P* = $\sqrt{\Delta}$ *s*1*s*2*s*3*s*4*s*⁵ $\left(\widetilde{P}-\sum_{i=1}^5\right)$ 1 2 $\left(1 - \frac{r_i}{\sqrt{\Delta}}\right)$ $\left(\widetilde{B}_{i}\right),$ $B_i = \frac{1}{2i}$ $\frac{1}{s_{i+2}s_{i-2}}\widetilde{B}_i$, $R_i = \frac{\varepsilon}{2(1-\varepsilon)}$ $\frac{1}{2(1-2\varepsilon)}R_i$.

Equation for new functions $(\epsilon$ -form)

$$
d\widetilde{P} = -\varepsilon \left\{ \widetilde{P}d(\log S) + \sum_{i=1}^{5} \left[-\widetilde{B}_i d \left(\log \left(1 + \frac{r_i}{\sqrt{\Delta}} \right) \right) + \widetilde{R}_i d \left(\log \frac{(\sqrt{\Delta} + r_i)(r_{i+2} + r_{i-2})}{(\sqrt{\Delta} + r_{i+2})(\sqrt{\Delta} + r_{i-2})} \right) \right] \right\},\,
$$

Result for $s_i < 0$

$$
P^{(6-2\epsilon)}(s_1, s_2, s_3, s_4, s_5) = \frac{2\Gamma(1-\epsilon)^2\Gamma(1+\epsilon)}{\epsilon\Gamma(1-2\epsilon)} \left[\frac{2\pi^{3/2}\Gamma[1/2-\epsilon]}{\Gamma[1-\epsilon]\sqrt{\Delta}} (-S)^{-\epsilon} + \sum_{i=1}^{5} (-s_i)^{-\epsilon} \frac{\sigma_i^2}{i} \left[\frac{\pi}{\epsilon} e^{-\frac{1}{2} \left[\frac{\pi}{\
$$

 QQ

(ロ) (伊) (巨) (三)

A few words about analytical continuation

1 Initially the result is obtained in Euclidean region $s_i < 0$.

◆ ロ ▶ → 何

 \triangleright 4 \equiv \triangleright 4

A few words about analytical continuation

- **1** Initially the result is obtained in Euclidean region $s_i < 0$.
- **2** In general, the continuation crucially depends on the path in \mathbb{C}^5 space.

◆ ロ ▶ → 何

A few words about analytical continuation

- **1** Initially the result is obtained in Euclidean region $s_i < 0$.
- **2** In general, the continuation crucially depends on the path in \mathbb{C}^5 space.
- \bullet Feynman prescription: $P(s_1, s_2, s_3, s_4, s_5)$ is analytic in the region Im $s_i > 0$ So, we may move between the regions via "upper octant" of \mathbb{C}^5 .

 Ω

A few words about analytical continuation

- **1** Initially the result is obtained in Euclidean region $s_i < 0$.
- **2** In general, the continuation crucially depends on the path in \mathbb{C}^5 space.
- **3** Feynman prescription: $P(s_1, s_2, s_3, s_4, s_5)$ is analytic in the region Im $s_i > 0$ So, we may move between the regions via "upper octant" of \mathbb{C}^5 .
- \bullet *P*(s_1, s_2, s_3, s_4, s_5) is given by one-fold integral with branching integrand. We should track movement of branching points with changing of *sⁱ* .

Result of analytical continuation

$$
P^{(6-2\epsilon)}(s_1, s_2, s_3, s_4, s_5) = \frac{2\Gamma(1-\epsilon)^2\Gamma(1+\epsilon)}{\epsilon\Gamma(1-2\epsilon)} \left[\Theta(s_i s_j > 0) \frac{2\pi^{3/2}\Gamma[1/2-\epsilon]}{\Gamma[1-\epsilon]\sqrt{\Delta}} (-S-i0)^{-\epsilon} + \sum_{i=1}^5 (-s_i - i0)^{-\epsilon} \int_1^{\infty} \frac{dt}{t} t^{\epsilon} \text{Re} \frac{1}{b_i(t)} \left\{ \arctan \frac{b_i(t)}{r_i} - \arctan \frac{b_i(t)}{r_{i+2}} - \arctan \frac{b_i(t)}{r_{i+2}} + \frac{\pi}{2} \left[\text{sign}r_{i+2} + \text{sign}r_{i-2} - \text{sign}r_i - \text{sign}(r_{i+2} + r_{i-2}) \right] \right\} \right],
$$

$$
r_n = \sum_{i=0}^4 (-1)^i s_{n+i} s_{n+i+1}, \quad \Delta = \det(2p_i \cdot p_j|_{i,j=1,\dots 4}) = \sum_{i=1}^5 r_i r_{i+2}, \quad S = 4s_1 s_2 s_3 s_4 s_5 / \Delta, \quad b_i(t) = \sqrt{(St/s_i - 1)\Delta + i0}.
$$

Note 1: Analytical continuation is **not** reduced to the replacement $s_i \rightarrow s_i + i0$. Note 2: arbitrary order of ε-expansion is one-fold integral of elementary functions.

At $\gamma = 1/\sqrt{1-\beta^2} \gg 1$ up to power suppressed (w.r.t. $1/\gamma$) terms Racah obtained in 1936 (At that time — heroic deed!)

$$
\sigma = \frac{(Z_1 \alpha)^2 (Z_2 \alpha)^2}{\pi m^2} \left[\frac{28L_0^3}{27} - \frac{178L_0^2}{27} + \left(\frac{370}{27} + \frac{7\pi^2}{27} \right) L_0 + \frac{7\zeta_3}{9} - \frac{13\pi^2}{54} - \frac{116}{9} \right], \quad L_0 = \log(2\gamma) .
$$

 QQ

At $\gamma = 1/\sqrt{1-\beta^2} \gg 1$ up to power suppressed (w.r.t. $1/\gamma$) terms Racah obtained in 1936 (At that time — heroic deed!)

$$
\sigma = \frac{(Z_1\alpha)^2(Z_2\alpha)^2}{\pi m^2}\left[\frac{28L_0^3}{27}-\frac{178L_0^2}{27}+\left(\frac{370}{27}+\frac{7\pi^2}{27}\right)L_0+\frac{7\zeta_3}{9}-\frac{13\pi^2}{54}-\frac{116}{9}\right],\quad L_0=\log{(2\gamma)}~.
$$

Simple application of presented approach: exact in γ calculation.

Three-loop cut diagrams:
$$
\overline{H}
$$

 $2Q$

At $\gamma = 1/\sqrt{1-\beta^2} \gg 1$ up to power suppressed (w.r.t. $1/\gamma$) terms Racah obtained in 1936 (At that time — heroic deed!)

$$
\sigma = \frac{(Z_1 \alpha)^2 (Z_2 \alpha)^2}{\pi m^2} \left[\frac{28L_0^3}{27} - \frac{178L_0^2}{27} + \left(\frac{370}{27} + \frac{7\pi^2}{27} \right) L_0 + \frac{7\zeta_3}{9} - \frac{13\pi^2}{54} - \frac{116}{9} \right], \quad L_0 = \log(2\gamma) .
$$

Simple application of presented approach: exact in γ calculation.

$$
\begin{array}{c}\n\overrightarrow{a} \\
\overrightarrow{b} \\
\overrightarrow{c}\n\end{array}
$$

- Three-loop cut diagrams
- IBP reduction \rightarrow 8 masters.

 $2Q$

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

At $\gamma = 1/\sqrt{1-\beta^2} \gg 1$ up to power suppressed (w.r.t. $1/\gamma$) terms Racah obtained in 1936 (At that time — heroic deed!)

$$
\sigma = \frac{(Z_1\alpha)^2(Z_2\alpha)^2}{\pi m^2}\left[\frac{28L_0^3}{27}-\frac{178L_0^2}{27}+\left(\frac{370}{27}+\frac{7\pi^2}{27}\right)L_0+\frac{7\zeta_3}{9}-\frac{13\pi^2}{54}-\frac{116}{9}\right],\quad L_0=\log{(2\gamma)}~.
$$

Simple application of presented approach: exact in γ calculation.

- Three-loop cut diagrams:
- IBP reduction \rightarrow 8 masters.
- DE reduction:

$$
\frac{\partial}{\partial x}\widetilde{\mathbf{J}} = \varepsilon \left[\frac{1}{x}M_0 + \frac{1}{x-1}M_1 + \frac{1}{x+1}M_2 \right] \widetilde{\mathbf{J}}, \quad x = \frac{1-\beta}{1+\beta},
$$

$$
M_0=\left[\begin{array}{cccccc} -1&0&0&0&0&0&0\\ 1&0&0&0&0&0&0\\ 0&1&-1&0&0&0&0\\ 0&0&0&-1&-1&0&0\\ 0&0&0&0&3&3&0\\ 0&0&0&0&-1&-1&0\\ 0&0&0&0&0&-1&-1\\ 0&0&0&2&1&0&1&1 \end{array}\right],\quad M_1=\mathrm{diag}(2,0,2,2,-6,0,2,0),\quad M_2=\mathrm{diag}(0,0,0,0,0,0,-2)\,.
$$

 Ω

Exact in γ result

$$
\sigma=\frac{(Z_1\alpha)^2(Z_2\alpha)^2}{\pi m^2}\bigg\{-\frac{1-\beta^2}{12\beta^2}L^4+\frac{2\left(23\beta^2-37\right)S_{3\alpha}}{9\beta^2}+\frac{2\left(11\beta^2-25\right)S_{3\delta}}{9\beta^2}-\frac{26S_2}{9\beta}\newline-\frac{\left(\beta^6+217\beta^4-135\beta^2+45\right)L^2}{54\beta^6}+\frac{5\left(67\beta^4-48\beta^2+18\right)L}{27\beta^5}-\frac{2\left(78\beta^4-35\beta^2+15\right)}{9\beta^4}\bigg\},
$$

 4 ロ } 4 6 } 4 \equiv } 4 \equiv

Exact in γ result

$$
\sigma = \frac{(Z_1 \alpha)^2 (Z_2 \alpha)^2}{\pi m^2} \left\{ -\frac{1 - \beta^2}{12 \beta^2} L^4 + \frac{2 \left(23 \beta^2 - 37 \right) S_{3a}}{9 \beta^2} + \frac{2 \left(11 \beta^2 - 25 \right) S_{3b}}{9 \beta^2} - \frac{26 S_2}{9 \beta} - \frac{\left(\beta^6 + 217 \beta^4 - 135 \beta^2 + 45 \right) L^2}{9 \beta^2} + \frac{5 \left(67 \beta^4 - 48 \beta^2 + 18 \right) L}{27 \beta^5} - \frac{2 \left(78 \beta^4 - 35 \beta^2 + 15 \right)}{9 \beta^4} \right\},\,
$$

$$
S_{3a} = \text{Li}_3 \left(\frac{1 - \beta}{1 + \beta} \right) + L \text{Li}_2 \left(\frac{1 - \beta}{1 + \beta} \right) - \frac{L^2}{2} \log \left(\frac{2 \beta}{1 + \beta} \right) - \frac{L^3}{12} - \zeta_3\,,
$$

$$
S_{3b} = \text{Li}_3 \left(-\frac{1 - \beta}{1 + \beta} \right) + \frac{L}{2} \text{Li}_2 \left(-\frac{1 - \beta}{1 + \beta} \right) + \frac{L^3}{24} - \frac{\pi^2 L}{24} + \frac{3 \zeta_3}{4},
$$

$$
S_2 = \text{Li}_2 \left(-\frac{1 - \beta}{1 + \beta} \right) + L \log \left(\frac{\beta + 1}{2} \right) - \frac{L^2}{4} + \frac{\pi^2}{12}, \quad L = \log \left(\frac{1 + \beta}{1 - \beta} \right).
$$

 4 ロ } 4 6 } 4 \equiv } 4 \equiv

Exact in γ result

$$
\sigma = \frac{(Z_1\alpha)^2(Z_2\alpha)^2}{\pi m^2}\bigg\{-\frac{1-\beta^2}{12\beta^2}L^4 + \frac{2\left(23\beta^2-37\right)S_{3\alpha}}{9\beta^2} + \frac{2\left(11\beta^2-25\right)S_{3b}}{9\beta^2} - \frac{26S_2}{9\beta}\newline- \frac{\left(\beta^6+217\beta^4-135\beta^2+45\right)L^2}{54\beta^6} + \frac{5\left(67\beta^4-48\beta^2+18\right)L}{27\beta^5} - \frac{2\left(78\beta^4-35\beta^2+15\right)}{9\beta^4}\bigg\},
$$

High-energy asymptotics:

$$
\sigma = \frac{(Z_1 \alpha)^2 (Z_2 \alpha)^2}{\pi m^2} \left\{ \frac{28L_0^3}{27} - \frac{178L_0^2}{27} + \left(\frac{370}{27} + \frac{7\pi^2}{27} \right) L_0 + \frac{7\zeta_3}{9} - \frac{13\pi^2}{54} - \frac{116}{9} \Longleftrightarrow \text{Racah results}
$$
\nFirst correction

\n
$$
\implies -\frac{1}{\gamma^2} \left[\frac{4L_0^4}{3} - \frac{98L_0^3}{27} + \frac{188L_0^2}{27} - \left(\frac{172}{27} + \frac{25\pi^2}{54} \right) L_0 - \frac{73\zeta_3}{18} + \frac{5\pi^2}{27} + \frac{43}{27} \right] + \dots \right\},
$$

(□) (何) (□) (□

Exact in γ result

$$
\sigma = \frac{(Z_1\alpha)^2(Z_2\alpha)^2}{\pi m^2}\bigg\{-\frac{1-\beta^2}{12\beta^2}L^4 + \frac{2\left(23\beta^2-37\right)S_{3\alpha}}{9\beta^2} + \frac{2\left(11\beta^2-25\right)S_{3b}}{9\beta^2} - \frac{26S_2}{9\beta} \\ - \frac{\left(\beta^6+217\beta^4-135\beta^2+45\right)L^2}{54\beta^6} + \frac{5\left(67\beta^4-48\beta^2+18\right)L}{27\beta^5} - \frac{2\left(78\beta^4-35\beta^2+15\right)}{9\beta^4}\bigg\},
$$

Low-energy asymptotics:

$$
\sigma = \frac{296(Z_1\alpha)^2(Z_2\alpha)^2\beta^8}{55125\pi m^2}\left(1 + \frac{7708\beta^2}{3663} + \ldots\right).
$$

Note: highly suppressed as β^8 !

◆ ロ ▶ → 何

 $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

 QQQ

Summary

- **IBP** reduction +DE reduction to ε -form is the most powerful approach to multiscale (multi)loop problems.
- \bullet An algorithm of finding ε -form of the differential systems for multiloop integrals is developed.
- Some applications of this algorithm already appeared. Applications to perturbative QCD calculations are ongoing. Suggestions are welcome!

∢ □ ▶ ⊣ *←* □

Summary

- **IBP** reduction +DE reduction to ε -form is the most powerful approach to multiscale (multi)loop problems.
- \bullet An algorithm of finding ε -form of the differential systems for multiloop integrals is developed.
- Some applications of this algorithm already appeared. Applications to perturbative QCD calculations are ongoing. Suggestions are welcome!

Thank you!