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Why multiloop integrals?

Technically, perturbative calculations
are reduced to the calculation of
(multi)loop integrals.

TOPOLOGY

@ Physical applications

@ Beautiful mathematics

@ Open problems

PERTURB.
CALCU-
LATIONS




Multiloop calculations

@ Multiloop people often

Unitarity-based Tensor
methods reduction

prefer many loops and »\\‘q \
one scale. e
‘ L -
@ Phenomenological represetiation Master integrals ‘
applications often require "v"
a few loops but many \ ‘ g

scales.
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IBP reduction (Chetyrkin&Tkachov 1981)
Scalar integrals family labeled byn

J(“)Z/ddll...ddle( ):/

al ...d%,
2D D PPz
Dy,...,Dy — denominators of the diagram, 5 ¢
D41, ...,Dy —numerators ( ny41,...,ay < 0). E external momenta



-
IBP reduction (Chetyrkin&Tkachov 1981)

a'ly...d%,

J(n) = /ddh ...d"I j(n) :/

Ld Po=-P17P2----
n2D}'...Dy
D1, ...,Dy — denominators of the diagram, Pe
Dyriq,...,Dy —numerators ( ny711,...,ay < 0).

e Explicit differentiation in (IBP&LI)
gives recurrence relations between

integrals J (n) with different n.

@ Using these relations, any integral can
be reduced to finite number of
master integrals.

QJ|

/ddll...ddlLW-qjj(n) =0
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- mwedeion
Differential equations(Kotikov,1991;Remiddi, 1997)

Differentiating the column-vector J of master integrals with respect to mass or

some invariant and performing IBP reduction we obtain differential equations

dJ (x) /dx =M(x,e)J (x)

with M(x, €) being a rational matrix of x and &.
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Differential equations(Kotikov,1991;Remiddi, 1997)

Differentiating the column-vector J of master integrals with respect to mass or

some invariant and performing IBP reduction we obtain differential equations

dJ (x) /dx =M(x,e)J (x)

with M(x, €) being a rational matrix of x and &.

By a suitable change of functions J (x) — T(x,&)J (x), it is possible to
transform equation to e-factorized form (e-form)

A (x) /9x = eS(x)J (x)

Moreover, rational matrix S(x) has only simple poles and falls off at infinity
(S(x) =¥;Si/ (x —x;)), i.e., the system is globally Fuchsian.
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o oo
Benefits of e-form
@ Given the equation

dJ (e,x) /dx = eS(x)J (g,x)

it is easy to find coefficients of expansion J (¢,x) =Y. J, (x)€" 1 by 1

3, (x) = / AXSE) Tt () .

The coefficients are automatically expressed in terms of Goncharov
polylogs and obey the property of uniform transcendentality.



Benefits of e-form

@ Given the equation

dJ (e,x) /dx = eS(x)J (g,x)

it is easy to find coefficients of expansion J (¢,x) =Y. J, (x) " 1 by 1:

3@ = [dSI ().

The coefficients are automatically expressed in terms of Goncharov
polylogs and obey the property of uniform transcendentality.

o For many variables if we secure simultaneous &-form
aJ (&,%) /dx; = €S;(X)J (&,%) , the integrability condition splits into two
9;S; = 9;S;j and S;S; = S;S; and the system can be rewritten as

dJ = edA]J.
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Benefits of €-form

@ Given the equation
dJ (e,x) /dx = eS(x)J (g,x)

it is easy to find coefficients of expansion J (¢,x) =Y. J, (x) " 1 by 1:

3 (x) = / ST (x)

The coefficients are automatically expressed in terms of Goncharov
polylogs and obey the property of uniform transcendentality.

o For many variables if we secure simultaneous &-form
aJ (&,%) /dx; = €S;(X)J (&,%) , the integrability condition splits into two
9;S; = 9;S;j and S;S; = S;S; and the system can be rewritten as

dJ = edA]J.

@ Usually the form of the system is drastically simplified.
RN.Lee BINE,Nowosibisy [ B s
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Example

Original matrix:

(x2+l)(2€—1)

ST 0 0 0 0 0 0 0
2(8—l)(£x4—x4+10£x2—8x2+£—l)
0 0 0 0 0
(x—l)x(x+1)(x2+l)(3€—2)
(48—3)(£x4—2€xz+4x2+£)
0 = 0 0 0 0
(x—Dx(x+1) (3241
0 263:8 3628 184166310 846210 410200 360 B6e3t 18204+ o o g
6(x—1)x3()c+l)(x2+1)(5—1)(3€—2)
2(x—1)(x+1)e(2e—-1
( 2%(4811() ) 0 0 0o ... ... 0 0
0 0 0 0 0 0
e2x4—ext—262:2 41862 1242462 ¢
0 0 0
2(x—l)x(x+l)(xz+l)(2€—l)
(xfl)()ﬁ»l)(€2x47£x4726£2x2+34£x2712x2+€27£)
0 - 0 0
2.3 (x2+1)(3£—2)
o = = = T 9ac



Example

After the change of functions:

2(x2+1)
5 0 0 0 0 0 0 0
(x==1)x
2(2+1) "
0 5 i 0 0 0 0 0
(x> —1)x &
0 -4 0 -1 0 0 0 0
- 6(x2+1)
0 0 L 0 0 0 0
. (Z—1)x
1 0 0 0 0 0 0
2(x2+1
0 0 0 0 2 l;_) 0 0
(x==1)x
2(:2+1) )
0 0 0 0 0 0 w2 72;
0 4 0 1 0 0 2 2(x"—1)
X &3 x2+1)x
o = = = = 9©ac



o Redwedonwoeform [
Problem formulation
Given a system

dJ (x) /dx =M(x, )] (x)
e-form

X
is it possible and how to find a change of functions reducing the system to

—J(),
T X — X
i.e., is it possible and how to find such T (x, €) that

T~ 'MT - T~ laT_sZ

xxk



o Redwedonwoeform [
Problem formulation

Given a system

9 (x) /dx = M(x,€)J (x)
is it possible and how to find a change of functions reducing the system to
e-form

i.e., is it possible and how to find such T (x, €) that

1 1
T-'MT-T~ aqr_szx o

@ Using ad hoc arguments, e.g., finding homogeneous integrals from
Feynman parametrization (Henn, 2013, 2014).

o Applying a regular procedure when luckily hitting a special form of the
initial matrix Ml (Gehrmann et al., 2014), (Argeri et al., 2014). E.g.,
when M (x, £) = M (x) + eM] (x)




Input: Rational matrix M (x, €)
Output: Rational matrix with only simple poles (Fuchsian singularities) on
the extended complex plane, M (x,€) = Y My (€)

k(€
X—xp °

Stage 2. Normalizing eigenvalues

Input: Matrix from the previous step, M (x,€) = Y Iff EZ)

Output: Matrix of the same form, but with the eigenvalues of all M (¢€)
confined to unit interval (—1/2,1/2].

Input: Matrix from the previous step.
Output: Matrix in e-form, M (x,€) = €Y

S
X—Xp




o Redwddonwoesform [
Reduction to e-form

o Stages 1 and 2 look like classical problems of ODE theory — are they
solved by mathematicians?
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o Stages 1 and 2 look like classical problems of ODE theory — are they
solved by mathematicians?

@ Almost. In particular, Barkatou&Pfluegel algorithm eliminates
higher-order poles in all finite points giving M (x) =Y xl\fl;k + P (x),
where P (x) is a polynomial.
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higher-order poles in all finite points giving M (x) =Y xl\fl;k + P (x),
where P (x) is a polynomial.

e Why not try to do better — get rid of P (x)?

@ Not always possible due to negative solution of the Riemann-Hilbert
problem by Bolibrukh(Bolibrukh,1989).




Reduction to e-form

o Stages 1 and 2 look like classical problems of ODE theory — are they
solved by mathematicians?

@ Almost. In particular, Barkatou&Pfluegel algorithm eliminates
higher-order poles in all finite points giving M (x) =Y xl\fl;k + P (x),
where P (x) is a polynomial.

@ Why not try to do better — get rid of P (x)?

@ Not always possible due to negative solution of the Riemann-Hilbert
problem by Bolibrukh(Bolibrukh,1989).

@ No algorithms for global reduction (including infinity point) so far.
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o rescionoeton [
Idea of reduction
Balance transformation

@ Both reduction to Fuchsian form and normalization of the matrix
residues are based on the following transformation

T (x) = B(P,x1,%[x) L P+

X—X2
where PP is some projector and P =1—P. When x; = o or x, = o omit

P,
X—x
denominator or numerator, respectively.



Idea of reduction

Balance transformation

@ Both reduction to Fuchsian form and normalization of the matrix
residues are based on the following transformation

def= ~X—X2
T (x) = B(P,x1,x|x) = P+ P,
X—X1
where PP is some projector and P =1—P. When x; = o or x, = o omit
denominator or numerator, respectively.

@ Balance transformation changes properties (pole order and eigenvalues

of matrix residue) of the differential system only at two points x = x; and
X =X2.



Idea of reduction

Balance transformation

@ Both reduction to Fuchsian form and normalization of the matrix
residues are based on the following transformation

def X —X2

T (x) = B(P,x1,x0x) =P+

P,
X—X1

where P is some projector and P = I —P. When x| = oo or x» = co omit
denominator or numerator, respectively.

@ Balance transformation changes properties (pole order and eigenvalues
of matrix residue) of the differential system only at two points x = x; and
X =X2.

@ Classical algorithms put x, = oo and try to construct P improving system
property at x;.
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Idea of reduction

Balance transformation

@ Both reduction to Fuchsian form and normalization of the matrix
residues are based on the following transformation

T (x) = B(P,x1,x00x) L P+ 22

P

x—x;

where [P is some projector and P = I — P. When x; = oo or x = co omit
denominator or numerator, respectively.

@ Balance transformation changes properties (pole order and eigenvalues
of matrix residue) of the differential system only at two points x = x; and
X =X2.

@ Classical algorithms put x; = oo and try to construct I’ improving system
property at x;.

o In a long sequence of such transformations the system is reduced in all
finite points, but behaviour at x = oo is totally spoiled.

RN.Lee BNENowsi) IS



@ What properties of [P are important?

«O>» «Fr» « > DA
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Idea of global reduction
Scrutinizing Barkatou&Pfluegel algortihm.

@ What properties of [P are important?

@ Only some properties of its image % = ImgP.




- resinosom
Idea of global reduction
Scrutinizing Barkatou&Pfluegel algortihm.

@ What properties of [P are important?

@ Only some properties of its image % = ImgP.

@ But the kernel (or, alternatively, co-image) of P can be chosen almost
arbitrarily! Requirement: ImgP NkerP = {0}.




Idea of global reduction
Scrutinizing Barkatou&Pfluegel algortihm.

@ What properties of [P are important?
@ Only some properties of its image % = ImgP.

@ But the kernel (or, alternatively, co-image) of P can be chosen almost
arbitrarily! Requirement: ImgP NkerP = {0}.

@ Idea of global reduction: use the above freedom to keep system
properties at x, under control.
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Stages 2 & 3: Factoring out €
After Stage 2 we should have

such that all eigenvalues of all “residues” M (&) are o« £. We need to find an
x-independent transformation T (&), such that

T (e)My (e)T (€) = €Si
How can we do it without knowing Sy in r.h.s.?
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Stages 2 & 3: Factoring out €

After Stage 2 we should have

such that all eigenvalues of all “residues” M (€) are o« €. We need to find an
x-independent transformation T (&), such that

T~ (e)My (e)T () = &Si




e
What may go wrong

@ At stage 1 and 2 we might fail to construct P with required properties
due to the restriction ImgP NkerP = {0}. This is naturally associated
with obstructions to positive solution of Hilbert’s 21st problem. In
particular, if some monodromy matrix is diagonalizable, we can always
balance with the corresponding point.

o Eigenvalues of matrix residues after Stage 1 might be not of the form
n+ €. In particular, it often happens that » is half-integer in a pair of
points x; and x,. One can then get rid of half-integer n by passing to
y=1/(x—x1)/ (x—x2), so that x = (x; —x2y*)/(1 —y?) is a rational
substitution.

@ Third step might result in degenerate matrix T (e, 1) for any u. E.g.
T(e,u)=0.

o Computational complexity might be overwhelming. One should use
block-triangular structure of the equations.

RN.Lee BNE Nowsik) IS



Example applications of €-form
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Onshell pentagon in d dimensions (M. Kozlov & R.L., 2016)
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Onshell pentagon in d dimensions (M. Kozlov & R.L., 2016)

P=

- 21
- P ,(1 _
515285354585 ( Z 2

i=1 \/K
1 € ~
Bi = Bi, Ri=-——R;.
Y osiesio T T 2(1-2¢8)

P P i rA)> +T€,-d(log

(VA+7i)(riga+ria)

(VA+ri0)(VA+ri ) )] } '

S
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S
dP = —s{;’d(logs) +Y |-
i=1

R;.
3 i\ L (VA+1i)(risa +7i-2)
B,d(log(lJr\/K)) +R,d(log (\/Z+r,»+2)(\/Z+r,-,2)>]}’
_2e _2r(1-e)’I(1 +¢) [ 2220 [1/2—¢] e
PO72) (51, 55,53, 54, 55) = Tl —2¢) [ Tl —¢]vVA (=9)
+Z( si _e/ftsR %m{ﬂctan bit)

— arctan L(t)

bi()  m, . . )
—arctan —— + = [signr;yp +signr;_p —signr; —sign (riy2 +ri2)] ¢ | -
Tiy2 ria 2
«0r «F» « =) Q>




o Eemplesofapplianion
Onshell pentagon in d dimensions
A few words about analytical continuation

@ Initially the result is obtained in Euclidean region s; < 0.
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Ims; > 0 So, we may move between the regions via “upper octant” of C>



Onshell pentagon in d dimensions

A few words about analytical continuation

@ Initially the result is obtained in Euclidean region s; < 0.
@ In general, the continuation crucially depends on the path in C> space.
© Feynman prescription: P (s1,s2,53,54,55) is analytic in the region
Ims; > 0 So, we may move between the regions via “upper octant” of C°.
Q P(s1,52,53,54,55) is given by one-fold integral with branching integrand.
We should track movement of branching points with changing of s;.

I N S |:> (;,:u,=\-/=’/-HE3‘——

ol ta  ton 0 1(=1) twm

1(04) t  tor  ta  te 1(0) tn
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Onshell pentagon in d dimensions

—e)2 3/2 —
(6-2¢) _ M)’ T(1 +e) 2mdPr[i2— ¢ _
P (s1+52, 53,54, 55) o2 O (sis; > 0) 71_‘[175]\/5
S 7 dr 1 bi(t) bi(t)
+ Y (=5i—i0)"¢ | —1°Re — { arctan ——— —arctan ———
=R 1/ t bi(r) T

(—8—-i0)~¢
i
4

bi(t
—arctan ﬁ
Tit2 i

T
i=0

=Y (D snpisnsivr . A=det(2p; pylijoi..a

+ g [signrip +signr;_o —signr; —sign (ri2 +77-2)] }] ;
5
)= Z riripa,  S=4s15835455 /A,  bi(t) =/ (St/si — 1) A+i0.
=1
Note 1: Analytical continuation is not reduced to the replacement s; — s; + i0
Note 2: arbitrary order of €-expansion is one-fold integral of elementary
functions.
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Electromagnetic e e~ -pair production in ion collisions
Total Born cross section (R.L.& K. Mingulov, 2016)

Aty=1/+/1—2>> 1 up to power suppressed (w.r.t. 1/y) terms Racah
obtained in 1936 (At that time — heroic deed!)
o Z10P @0 [

m?

3 2
28Ly _ 178L5 370
27

7n2 786 1372 116
27 W*W)L“T‘*‘*

9 ] , Lo=log(2y).
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Total Born cross section (R.L.& K. Mingulov, 2016)

Aty=1/+/1—2>> 1 up to power suppressed (w.r.t. 1/y) terms Racah
obtained in 1936 (At that time — heroic deed!)
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2813 17812 2 2 6
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Simple application of presented approach: exact in Y calculation.

@ Three-loop cut diagrams: E E
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Electromagnetic e e~ -pair production in ion collisions
Total Born cross section (R.L.& K. Mingulov, 2016)

Aty=1/+/1—2>> 1 up to power suppressed (w.r.t. 1/y) terms Racah
obtained in 1936 (At that time — heroic deed!)

Zia)2(Zy)? [2803 17812 (370 7A2 7 1372 116
(Z10)" (Zr ) [270_ 270 S LO_*_ﬁ_i_f . Lo=log(2y).

m?

Simple application of presented approach: exact in Y calculation.

@ Three-loop cut diagrams: = I

o IBP reduction —8 masters.
@ DE reduction:

|
—_

cocoocoo~oo
—

Mo = . My =diag(2,0,2,2,-6,0,2,0), M, =diag(0,0,0,0,0,0,0,~2).

ocoocococo

| |
vololococo
—~ol woocoo

|
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(Z1 )2 (Zy)? L$2ﬁ+2@w140&a+zomkdﬂ&b .
. Tzt [ -
7l'm2 { 12ﬁ2 932

9p?

9B
BO+217p4 — 1352 +45) 1> 5(67p* —48p2+18)L  2(788% — 3582 +15
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9p2

R S 2(2362-37) 834 . 2(11B2-25)S3 65,
o= X 27
o { 1252 952

9P
(ﬁ6+217ﬁ4—135ﬁ2+4s)L2 (67/34—48ﬁ2+18) (78ﬁ4—35ﬁ2+15)
546 27B5 B 9B }
_ 2 3
o (1) () (%) -5
S3b:Li3(—%)+gLiz( 1;2)4’5‘%”’%’
SZ:Liz(—%)-%—Llog(ﬁ;rl)—L‘TZ+7;—;, Lzlog(%).
«40>» 4F>» «Z» « E)» Q>
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Electromagnetic e e~ -pair production in ion collisions

o B @R [ 1B 2(2382-37) 834 K (1182 ~25) 53 268,
N m? 1282 9B2

9p2 9B
(BS+2178% ~ 13582 +45) 12 5 (67/34 —48p2+18) L 2(78B4 —358% + 15)
_ N _ ,
5436 2783 9p4 }
High-energy asymptotics:
(Zia)*(Zoa)? (2803 178LF (370 7x? 78 1372 116
= ki (N ST 58 2%~ 2 Racahresult
o P 7 2 T\ a7 T Jlet g T 5y g Racahresults
First don s 1 413 98L3 N 18812 /172 +25n2
1rst correction ’)/2 3 27 27 27 54

738 577 43
L=t tog| v g
(=] = A2V Eq
~ RN.Lee (BINP,Novosibirsky ~ DEapproach [ HSQED2016 | 21/22




R S 2(2362-37) 834 . 2(11B2-25)S3 65,
o= 12 e ) - P it}
o { 1252 952

54p06
Low-energy asymptotics:

9p2 9B

2785

(ﬁﬁ +217B% —135p2 +45) 2 ) 5 (67/34 — 488 + 18) L 2 (78ﬁ4 —35B2 + 15)

_ 296(210)*(Zo)* B*

551257m? (1
Note: highly suppressed as 38!

770832
. B

)

9p4

3
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Summary

@ IBP reduction +DE reduction to €-form is the most powerful approach to
multiscale (multi)loop problems.

@ An algorithm of finding &-form of the differential systems for multiloop
integrals is developed.

@ Some applications of this algorithm already appeared. Applications to
perturbative QCD calculations are ongoing. Suggestions are welcome!



Summary

@ IBP reduction +DE reduction to €-form is the most powerful approach to
multiscale (multi)loop problems.

@ An algorithm of finding &-form of the differential systems for multiloop
integrals is developed.

@ Some applications of this algorithm already appeared. Applications to
perturbative QCD calculations are ongoing. Suggestions are welcome!

Thank you! ]
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