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Introduction

Why multiloop integrals?

Perturbative calculations
Technically, perturbative calculations
are reduced to the calculation of
(multi)loop integrals.

Multiloop integrals
Physical applications

Beautiful mathematics

Open problems
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Introduction

Multiloop calculations

Problem
Multiloop people often
prefer many loops and
one scale.

Phenomenological
applications often require
a few loops but many
scales.

C
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Master integrals

Multiscale problems: IBP+DE approach.
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Introduction

IBP reduction (Chetyrkin&Tkachov 1981)

Scalar integrals family labeled by n

J(n) =
∫

ddl1 . . .ddlL j(n) =
∫ ddl1 . . .ddlL

π
Ld
2 Dn1

1 . . .DnN
N

D1, . . . ,DM — denominators of the diagram,
DM+1, . . . ,DN —numerators ( nM+1, . . . ,nN 6 0).

p1p2

pE

p0=-p1-p2...-pE

Basic idea of IBP reduction
Explicit differentiation in (IBP&LI)
gives recurrence relations between
integrals J (n) with different n.

Using these relations, any integral can
be reduced to finite number of
master integrals.

IBP∫
ddl1 . . .ddlL

∂

∂ li
·qj j(n) = 0

LI

p1µp2ν ∑
e

p[µe ∂
ν ]
e J = 0
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Introduction

Differential equations(Kotikov,1991;Remiddi, 1997)

Differentiating the column-vector J of master integrals with respect to mass or
some invariant and performing IBP reduction we obtain differential equations

∂J(x)/∂x =M(x,ε)J(x)

with M(x,ε) being a rational matrix of x and ε .

Recent remarkable observation (Henn, 2013)

By a suitable change of functions J(x)→ T(x,ε)J̃(x), it is possible to
transform equation to ε-factorized form (ε-form)

∂ J̃(x)/∂x = εS(x)J̃(x)

Moreover, rational matrix S(x) has only simple poles and falls off at infinity
(S(x) = ∑iSi/(x− xi)), i.e., the system is globally Fuchsian.
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Introduction

Benefits of ε-form

Given the equation

∂J(ε,x)/∂x = εS(x)J(ε,x)

it is easy to find coefficients of expansion J(ε,x) = ∑Jn (x)εn 1 by 1:

Jn (x) =
∫

dxS(x)Jn−1 (x) .

The coefficients are automatically expressed in terms of Goncharov
polylogs and obey the property of uniform transcendentality.

For many variables if we secure simultaneous ε-form
∂J(ε,~x)/∂xi = εSi(~x)J(ε,~x) , the integrability condition splits into two
∂jSi = ∂iSj and SjSi = SiSj and the system can be rewritten as

dJ = εdAJ .

Usually the form of the system is drastically simplified.
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Introduction

Example

Original matrix:



(
x2+1

)
(2ε−1)

(x−1)x(x+1) 0 0 0 0 0 0 0

0
2(ε−1)

(
εx4−x4+10εx2−8x2+ε−1

)
(x−1)x(x+1)

(
x2+1

)
(3ε−2)

. . . . . . 0 0 0 0

0 −
(4ε−3)

(
εx4−2εx2+4x2+ε

)
(x−1)x(x+1)

(
x2+1

) . . . . . . 0 0 0 0

0 2ε3x8−3ε2x8+εx8+16ε3x6−84ε2x6+102εx6−36x6−36ε3x4−18ε2x4+...

6(x−1)x3(x+1)
(

x2+1
)
(ε−1)(3ε−2)

. . . . . . 0 0 0 0

2(x−1)(x+1)ε(2ε−1)
x2(4ε−1)

0 0 0 . . . . . . 0 0

0 0 0 0 . . . . . . 0 0

0 ε2x4−εx4−2ε2x2+18εx2−12x2+ε2−ε

2(x−1)x(x+1)
(

x2+1
)
(2ε−1)

. . . . . . 0 0 . . . . . .

0 −
(x−1)(x+1)

(
ε2x4−εx4−26ε2x2+34εx2−12x2+ε2−ε

)
2x3
(

x2+1
)
(3ε−2)

. . . . . . 0 0 . . . . . .


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Introduction

Example

After the change of functions:

ε



2
(

x2+1
)

(x2−1)x
0 0 0 0 0 0 0

0
2
(

x2+1
)

(x2−1)x
1
x 0 0 0 0 0

0 − 4
x 0 − 1

x 0 0 0 0

0 0 12
x −

6
(

x2+1
)

(x2−1)x
0 0 0 0

1
x 0 0 0 0 0 0 0

0 0 0 0 2
x

2
(

x2+1
)

(x2−1)x
0 0

0 0 0 0 0 0
2
(

x2+1
)

(x2−1)x
− 2

x

0 4
x 0 1

x 0 0 2
x − 2(x2−1)(

x2+1
)

x


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Reduction to ε-form

Problem formulation
Given a system

∂J(x)/∂x =M(x,ε)J(x)

is it possible and how to find a change of functions reducing the system to
ε-form

∂ J̃(x)/∂x = ε ∑
k

Sk

x− xk
J̃(x),

i.e., is it possible and how to find such T(x,ε) that

T−1MT−T−1
∂xT= ε ∑

k

Sk

x− xk
?

Approaches so far:
Using ad hoc arguments, e.g., finding homogeneous integrals from
Feynman parametrization (Henn, 2013, 2014).

Applying a regular procedure when luckily hitting a special form of the
initial matrix M (Gehrmann et al., 2014), (Argeri et al., 2014). E.g.,
when M(x,ε) =M0 (x)+ εM1 (x)
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Reduction to ε-form

Algorithm of reduction to ε-form (R.L. 2015)

Stage 1. Eliminating higher-order poles

Input: Rational matrix M(x,ε)
Output: Rational matrix with only simple poles (Fuchsian singularities) on
the extended complex plane, M(x,ε) = ∑k

Mk(ε)
x−xk

.

Stage 2. Normalizing eigenvalues

Input: Matrix from the previous step, M(x,ε) = ∑k
Mk(ε)
x−xk

.
Output: Matrix of the same form, but with the eigenvalues of all Mk (ε)
confined to unit interval (−1/2,1/2].

Stage 3. Factoring out ε

Input: Matrix from the previous step.
Output: Matrix in ε-form, M(x,ε) = ε ∑k

Sk
x−xk

R.N. Lee (BINP, Novosibirsk) DE approach HSQCD-2016 10 / 22



Reduction to ε-form

Reduction to ε-form

Stages 1 and 2 look like classical problems of ODE theory — are they
solved by mathematicians?

Almost. In particular, Barkatou&Pfluegel algorithm eliminates
higher-order poles in all finite points giving M(x) = ∑k

Mk
x−xk

+P(x),
where P(x) is a polynomial.

Why not try to do better — get rid of P(x)?

Not always possible due to negative solution of the Riemann-Hilbert
problem by Bolibrukh(Bolibrukh,1989).

No algorithms for global reduction (including infinity point) so far.
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Reduction to ε-form

Idea of reduction
Balance transformation

Both reduction to Fuchsian form and normalization of the matrix
residues are based on the following transformation

T(x) = B(P,x1,x2|x) def
= P+

x− x2

x− x1
P ,

where P is some projector and P= I−P. When x1 = ∞ or x2 = ∞ omit
denominator or numerator, respectively.

Balance transformation changes properties (pole order and eigenvalues
of matrix residue) of the differential system only at two points x = x1 and
x = x2.
Classical algorithms put x2 = ∞ and try to construct P improving system
property at x1.
In a long sequence of such transformations the system is reduced in all
finite points, but behaviour at x = ∞ is totally spoiled.
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Reduction to ε-form

Idea of global reduction
Scrutinizing Barkatou&Pfluegel algortihm.

What properties of P are important?

Only some properties of its image U = ImgP.

But the kernel (or, alternatively, co-image) of P can be chosen almost
arbitrarily! Requirement: ImgP∩kerP= {0}.
Idea of global reduction: use the above freedom to keep system
properties at x2 under control.

kerP ImgP

P
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Reduction to ε-form

Stages 2 & 3: Factoring out ε

After Stage 2 we should have

M(x,ε) = ∑
k

Mk (ε)

x− xk
,

such that all eigenvalues of all “residues” Mk (ε) are ∝ ε . We need to find an
x-independent transformation T(ε), such that

T−1 (ε)Mk (ε)T(ε) = εSk

How can we do it without knowing Sk in r.h.s.?
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x-independent transformation T(ε), such that
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Stage 3. Trick:write it twice

T(ε)×
(

T−1 (ε)
Mk (ε)

ε
T(ε) = Sk = T−1 (µ)

Mk (µ)

µ
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Reduction to ε-form

Stages 2 & 3: Factoring out ε

After Stage 2 we should have

M(x,ε) = ∑
k

Mk (ε)

x− xk
,

such that all eigenvalues of all “residues” Mk (ε) are ∝ ε . We need to find an
x-independent transformation T(ε), such that

T−1 (ε)Mk (ε)T(ε) = εSk

Linear system for matrix elements of T(ε,µ) = T(ε)T−1 (µ)

Mk (ε)

ε
T(ε,µ) = T(ε,µ)

Mk (µ)

µ
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Reduction to ε-form

What may go wrong

At stage 1 and 2 we might fail to construct P with required properties
due to the restriction ImgP∩kerP= {0}. This is naturally associated
with obstructions to positive solution of Hilbert’s 21st problem. In
particular, if some monodromy matrix is diagonalizable, we can always
balance with the corresponding point.

Eigenvalues of matrix residues after Stage 1 might be not of the form
n+αε . In particular, it often happens that n is half-integer in a pair of
points x1 and x2. One can then get rid of half-integer n by passing to
y =

√
(x− x1)/(x− x2), so that x = (x1− x2y2)/(1− y2) is a rational

substitution.

Third step might result in degenerate matrix T(ε,µ) for any µ . E.g.
T(ε,µ) = 0.

Computational complexity might be overwhelming. One should use
block-triangular structure of the equations.

R.N. Lee (BINP, Novosibirsk) DE approach HSQCD-2016 15 / 22



Example applications of ε-form



Examples of application

Onshell pentagon in d dimensions (M. Kozlov & R.L., 2016)

Master integrals
p1

p2

p3 p4

p5P B1 B2 B3 B4 B5

R1 R2 R3 R4 R5

New functions P̃, B̃, R̃

P =

√
∆

s1s2s3s4s5

(
P̃−

5

∑
i=1

1
2

(
1− ri√

∆

)
B̃i

)
,

Bi =
1

si+2si−2
B̃i , Ri =

ε

2(1−2ε)
R̃i .

Equation for new functions (ε-form)

dP̃ =−ε

{
P̃d
(
logS

)
+

5

∑
i=1

[
−B̃id

(
log
(

1+
ri√
∆

))
+ R̃id

(
log

(
√

∆+ ri)(ri+2 + ri−2)

(
√

∆+ ri+2)(
√

∆+ ri−2)

)]}
,

Result for si < 0

P(6−2ε) (s1, s2 , s3, s4 , s5) =
2Γ(1− ε)2Γ(1+ ε)

εΓ(1−2ε)

[
2π3/2Γ [1/2− ε]

Γ [1− ε]
√

∆
(−S)−ε

+
5

∑
i=1

(−si)
−ε

∞∫
1

dt
t

tε Re
1

bi(t)

{
arctan

bi(t)
ri
− arctan

bi(t)
ri+2

− arctan
bi(t)
ri−2

+
π

2
[signri+2 + signri−2− signri− sign(ri+2 + ri−2)]

}]
.
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Examples of application

Onshell pentagon in d dimensions
A few words about analytical continuation

1 Initially the result is obtained in Euclidean region si < 0.

2 In general, the continuation crucially depends on the path in C5 space.
3 Feynman prescription: P(s1,s2,s3,s4,s5) is analytic in the region

Imsi > 0 So, we may move between the regions via “upper octant” of C5.
4 P(s1,s2,s3,s4,s5) is given by one-fold integral with branching integrand.

We should track movement of branching points with changing of si.

1 (0−) tb1 t01 tc1 t∞1

1 (0+) tb1 t01 tc1 t∞1

t∞1 tc1 t01 0 1 (−1) tb1

1 (0)

tb

tb1
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Examples of application

Onshell pentagon in d dimensions

Result of analytical continuation

P(6−2ε) (s1 , s2 , s3 , s4 , s5) =
2Γ(1− ε)2Γ(1+ ε)

εΓ(1−2ε)

[
Θ
(
sisj > 0

) 2π3/2Γ [1/2− ε]

Γ [1− ε]
√

∆
(−S−i0)−ε

+
5

∑
i=1

(−si−i0)−ε

∞∫
1

dt
t

tε Re
1

bi(t)

{
arctan

bi(t)
ri
−arctan

bi(t)
ri+2

−arctan
bi(t)
ri−2

+
π

2
[signri+2 + signri−2− signri− sign(ri+2 + ri−2)]

}]
,

rn =
4

∑
i=0

(−1)isn+isn+i+1 , ∆ = det
(
2pi ·pj |i,j=1,...4

)
=

5

∑
i=1

riri+2 , S = 4s1s2s3s4s5/∆ , bi(t) =
√

(St/si−1)∆+ i0.

Note 1: Analytical continuation is not reduced to the replacement si→ si + i0.
Note 2: arbitrary order of ε-expansion is one-fold integral of elementary
functions.
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Examples of application

Electromagnetic e+e−-pair production in ion collisions
Total Born cross section (R.L.& K. Mingulov, 2016)

At γ = 1/
√

1−β 2� 1 up to power suppressed (w.r.t. 1/γ) terms Racah
obtained in 1936 (At that time — heroic deed!)

σ =
(Z1α)2(Z2α)2

πm2

[
28L3

0
27
− 178L2

0
27

+

(
370
27

+
7π2

27

)
L0 +

7ζ3
9
− 13π2

54
− 116

9

]
, L0 = log(2γ) .

Simple application of presented approach: exact in γ calculation.

Three-loop cut diagrams: .
IBP reduction→8 masters.
DE reduction:

∂

∂x
J̃ = ε

[
1
x

M0 +
1

x−1
M1 +

1
x+1

M2

]
J̃ , x =

1−β

1+β
,

M0 =



−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 3 3 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 −1 −1
0 0 0 2 1 0 1 1


, M1 = diag(2,0,2,2,−6,0,2,0) , M2 = diag(0,0,0,0,0,0,0,−2) .
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Examples of application

Electromagnetic e+e−-pair production in ion collisions

Exact in γ result

σ =
(Z1α)2(Z2α)2

πm2

{
− 1−β 2

12β 2 L4 +
2
(

23β 2−37
)

S3a

9β 2 +
2
(

11β 2−25
)

S3b

9β 2 − 26S2
9β

−

(
β 6 +217β 4−135β 2 +45

)
L2

54β 6 +
5
(

67β 4−48β 2 +18
)

L

27β 5 −
2
(

78β 4−35β 2 +15
)

9β 4

}
,
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S3a = Li3

(
1−β

1+β

)
+LLi2

(
1−β

1+β

)
− L2

2
log
(

2β

1+β

)
− L3

12
−ζ3 ,

S3b = Li3

(
− 1−β

1+β

)
+

L
2

Li2

(
− 1−β

1+β

)
+

L3

24
− π2L

24
+

3ζ3
4

,

S2 = Li2

(
− 1−β

1+β

)
+L log

(
β +1

2

)
− L2

4
+

π2

12
, L = log

(
1+β

1−β

)
.
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High-energy asymptotics:

σ =
(Z1α)2(Z2α)2

πm2

{
28L3

0
27
− 178L2

0
27

+

(
370
27

+
7π2

27

)
L0 +

7ζ3

9
− 13π2

54
− 116

9
⇐= Racah results

First correction =⇒− 1
γ2

[
4L4

0
3
− 98L3

0
27

+
188L2

0
27

−
(

172
27

+
25π2

54

)
L0−

73ζ3

18
+

5π2

27
+

43
27

]
+ . . .

}
,
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,

Low-energy asymptotics:

σ =
296(Z1α)2(Z2α)2β 8

55125πm2

(
1+

7708β 2

3663
+ . . .

)
.

Note: highly suppressed as β 8!
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Summary

Summary

IBP reduction +DE reduction to ε-form is the most powerful approach to
multiscale (multi)loop problems.

An algorithm of finding ε-form of the differential systems for multiloop
integrals is developed.

Some applications of this algorithm already appeared. Applications to
perturbative QCD calculations are ongoing. Suggestions are welcome!

Thank you!
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