Jets in DIS

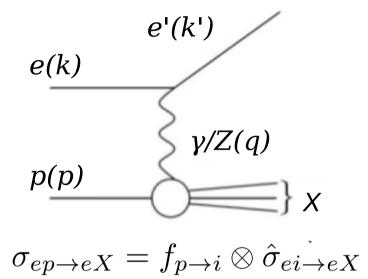
Daniel Britzger for the H1 Collaboration

PDF4LHC, September 2016 CERN 13.09.2016

Deep-inelastic scattering

Neutral current deep-inelastic scattering

Process: $ep \rightarrow e'X$ Electron or positron

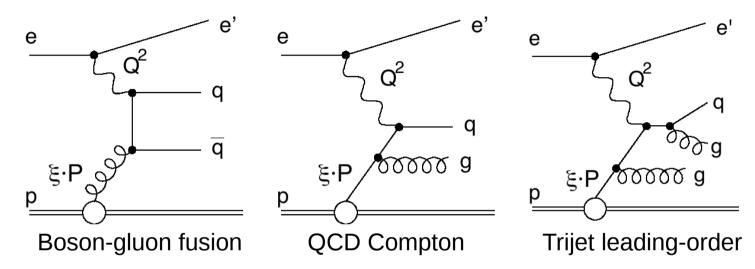

Kinematic variables

Virtuality of exchanged boson Q^2

$$Q^2 = -q^2 = -(k-k')^2$$

Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$


NC and CC DIS cross sections (HERA-II) are mandatory ingredients for PDF fits

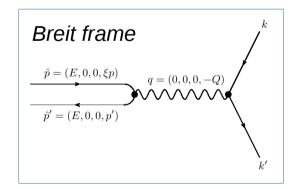
- Only one proton involved
 - -> lepton directly probes (charged) constitutents of proton

Gluon is mainly indirectly constrained by DGLAP and sum-rules

-> Measurement of $ep \rightarrow 2j+X$ will allow direct access of gluon content

Jet production in ep scattering

Jet measurements are performed in Breit reference frame


• Exchanged virtual boson collides 'head-on' with parton from proton ('brick-wall' frame)

Jet measurements directly sensitive

- to $\alpha_{\rm s}$ already at leading-order
- to gluon content of proton

Trijet measurement

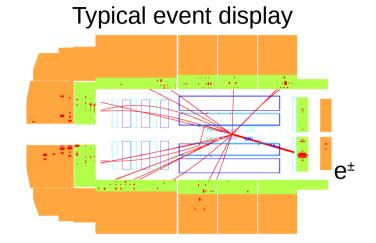
- More than three jets with significant transverse momenta
- Leading-order already at $O(\alpha_s^2)$

New H1 jet cross sections @ low-Q2

H1prelim-16-061

- inclusive jet, dijet and trijet cross sections in NC DIS
- preliminary results in identical phase space as HERA-I analysis
 - $5 < Q^2 < 100 \text{ GeV}^2$
 - 0.2 < y < 0.65

- <u>'normalised' inclusive jet</u>, <u>normalised dijet</u> and <u>normalised trjet</u> cross sections i.e. normalised to NC DIS cross section in respective Q2 range
- optimized NC DIS phase space
 - 5.5 < Q² < 80 GeV²
 - 0.2 < y < 0.6
- optimised jet-binning
- optimised dijet and trijet definition
 - No cut on invariant mass of the 2-leading jets
 - (implicit) asymmetric cuts on jet-pT to avoid infrared sensitive regions of pQCD calculations


Analysis strategy and kinematic range

Data must be corrected for detector effects

- Kinematic migrations
- Acceptance and efficiency effects

Regularised unfolding

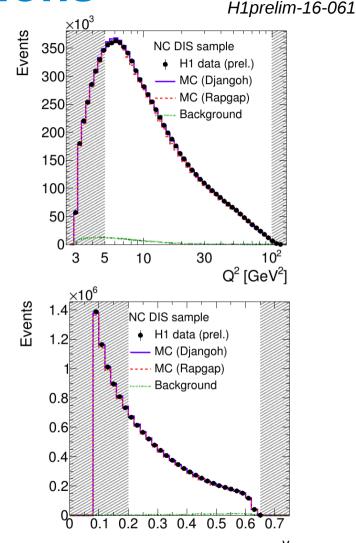
- Matrix based unfolding method (TUnfold)
- Consider an '*extended phase space*' for accurate description of migrations into and out of 'measurement phase space'

Extended phase space for unfolding		Phase space of cross sections			
			H1prelim-16-061	H1prelim-16-062	
NC DIS	Q ² > 3 GeV ²	NC DIS	$5 < Q^2 < 100 \text{ GeV}^2$	$5.5 < Q^2 < 80 \text{ GeV}^2$	
	y > 0.08		0.2 < y < 0.65	0.2 < y < 0.6	
(inclusive) Jets	P _T ^{jet} > 3 GeV	(inclusive) Jets	$P_{T}^{jet} > 5 \text{ GeV}$	$P_{T}^{jet} > 4.5 \text{ GeV}$	
	$-1.5 < \eta^{lab} < 2.75$		$-1.0 < \eta^{lab} < 2.5$	$-1.0 < \eta^{lab} < 2.5$	
Dijet and Trijet		Dijet and Trijet	M _{jj} > 18 GeV	$P_{T}^{jet} > 4 \text{ GeV}$	
	$< P_{T}^{jet} > 3 \text{ GeV}$		$P_T^{jet} > 5 \text{ GeV}$	<p<sub>T^{jet}> > 5 [5.5] GeV</p<sub>	

PDF4LHC, Sept. 2016

Control distributions

Acceptance of NC DIS events


- Scattered lepton is found in SpaCal
- Lepton energy $E_e > 11 \text{ GeV}$
- Selection based on un-prescaled SpaCal electron trigger

Monte Carlo generators

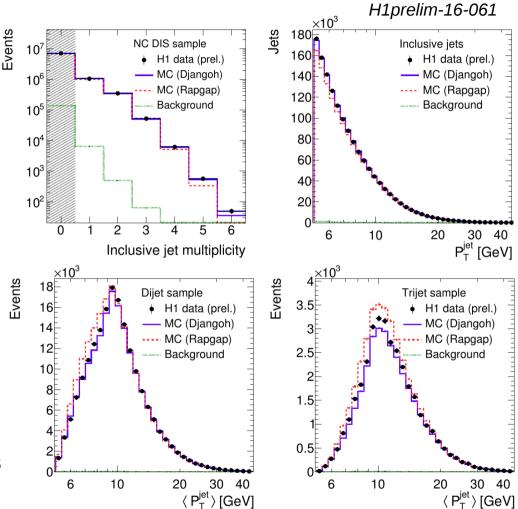
- Rapgap: LO matrix elements + PS
- Djangoh: Color-dipole model
- String fragmentation for hadronisation

Background

- Photoproduction simulation using Pythia
- Normalised to data using dedicated event selection
- Background for jet quantities almost negligible

Detector-level distributions for jets

Jet reconstruction


- k_{τ} jet algorithm with R=1
- Jets built from tracks and clusters
- Jet energy calibration using neural networks Approx. 1% Jet energy scale uncertainty

Monte Carlo predictions

- MC simulations used for unfolding
- Jet multiplicities and spectra not well modelled
 - Djangoh: p_T^{jet} spectra too hard
 - Rapgap: Jet multiplicity underestimated
 - Both generators tend to have too few jets in forward direction
- -> MC generators are weighted to describe data

Dijet and Trijet

- Distributions raise steeply due to p_T^{jet} > 5 GeV requirement
- -> Extended phase space important for migrations

Inclusive jet cross sections

10

6

 $5 < Q^2 < 7 \text{ GeV}^2$

20

 $15 < Q^2 < 20 \text{ GeV}^2$

10

30 40

P^{jet}_T [GeV]

ب^ا ک^و 10

d²o/dQ²dP_T [pb/G

10

6

10

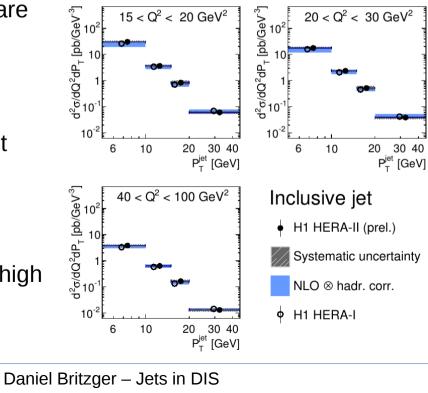
 $7 < Q^2 < 10 \text{ GeV}^2$

20

 $20 < Q^2 < 30 \text{ GeV}^2$

30 40

P^{jet}_T [GeV]


Double-differential inclusive jet cross sections as function of Q² and $p_{\tau^{jet}}$

Inclusive jets

- · Count each jet in an NC DIS event
- Stat. uncertainty and correlations are measured
- Well described by NLO

Compared to H1 HERA-I

- Largely independent measurement ٠
- HERA-II data with comparable precision
- Benefit from refined experimental • methods
- Statistical uncertainty reduced for high P_{T} and high Q^{2}

H1prelim-16-061

 $10 < Q^2 < 15 \text{ GeV}^2$

 $30 < Q^2 < 40 \text{ GeV}^2$

20 30 40

20 30 40

P^{jet}_T [GeV]

P^{jet}_T [GeV]

10

10

10

[bb/

 $d^2\sigma/d\Omega^2dP_T$

10

6

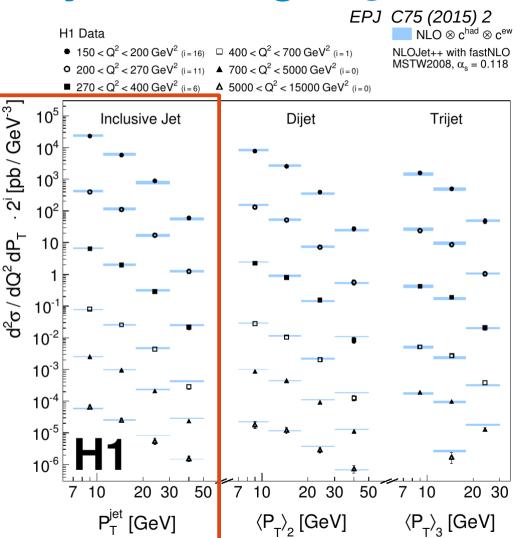
6

Reminder: inclusive jets @ high-Q²

Eur. Phys. J. C75 (2015) 2

H1 HERA-II jet cross sections at high-Q²

Jet cross sections at 'high-Q2'


- Inclusive jet, dijet and trijet cross sections
- 150 < Q² < 15000GeV²

Inclusive jets published for

• 7 < p_T < 50 GeV

Recent studies

- Inclusive jets are well measurable down to $p_{\scriptscriptstyle T}$ = 5 GeV
- The original 'high-Q2 '-analysis contained a cross section bin for inclusive jets for
 - $5 < p_T < 7 \text{ GeV}$
- These additional bins (for each Q2 range) are now provided
 - Absolute and normalised cross sections

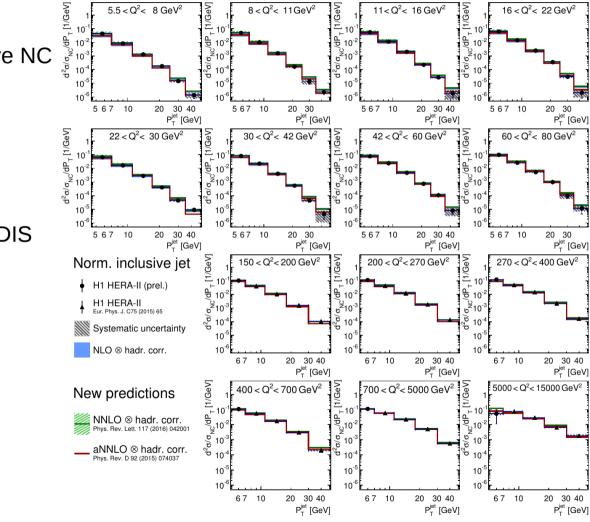
Inclusive jets production in NC DIS

'Normalised' jet cross sections

- H1prelim-16-062
- Normalise jet cross sections w.r.t. inclusive NC DIS cross section
 - Full/partial cancellation of uncertainties

<u>New Data</u>

HERA-II low-Q² HERA-II high-Q², $5 < p_T < 7 GeV$ Inclusive jets for major part of HERA NC DIS phase space


New predictions

aNNLO from JetViP

 Approximate NNLO using threshold resummation PR D 92 (2015) 074037 & work in progress

NNLO

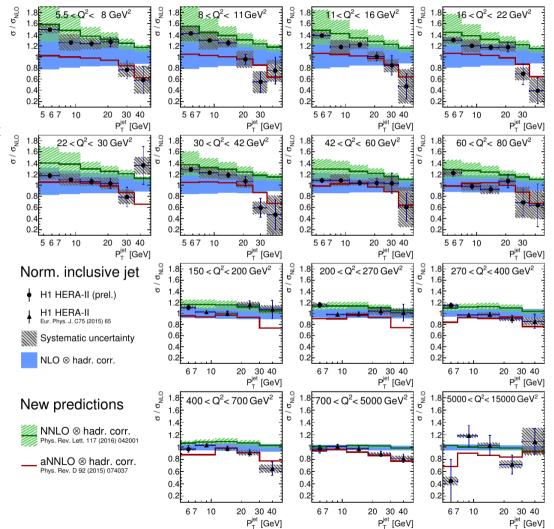
- Full NNLO PRL 117 (2016) 042001 & work in progress See talk by J. Currie @ QCD@LHC2016
- Improved description of data by NNLO

Normalised Inclusive Jets

Detailed ratio to NLO prediction

Data reasonably described by NLO theory, but NLO scale uncertainty large

Normalisation w.r.t. NC DIS for predictions

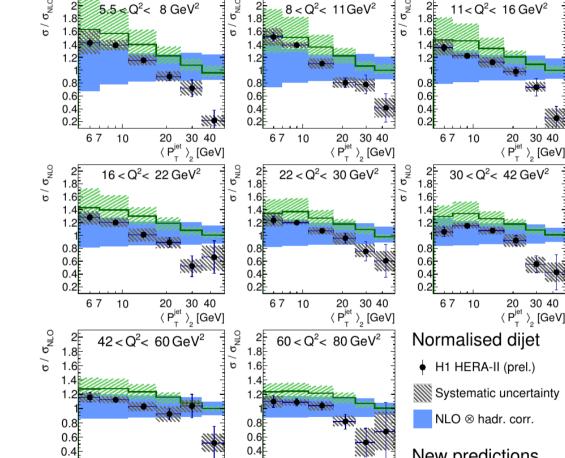

- NNLO & aNNLO predictions normalised with NC DIS predictions from APFEL using FONLL-C [V. Bertone et al.]
- NLO predictions normalised with ZM-VFNS using QCDNUM
- **PDF:** NNPDF30_(n)nlo_0118 **Scale** $\mu_r = \mu_f = (Q^2 + P_T^2)/2$

aNNLO

- Improved data description at high-pT
- At low-pT aNNLO similar to NLO

NNLO

- Improved description of data by NNLO
- Significantly reduced scale uncertainty (particularly for higher scales)


Normalised dijets

Normalised dijet cross sections in NC DIS as a function of Q^2 and $\langle p_T \rangle_2$

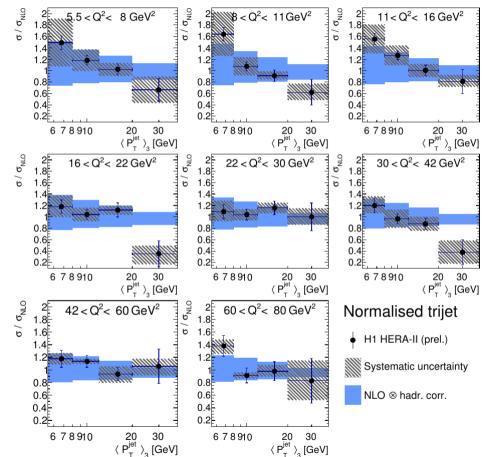
• $< P_T >_2 = (P_T^{jet1} + P_T^{jet2})/2$ with: $P_{\tau^{jet}} > 4 \text{ GeV}$

Comparison to NLO and <u>NNLO</u> predictions

- NLO give reasonable descriptions within large scale uncertainties ('6point' variation)
- NNLO improves shape dependence
- NNLO slightly overshoots data -> partially caused by normalisation w.r.t. NC DIS
- high-pT region difficult to describe

20 30 40 ⟨P^{jet}_T⟩ [GeV] Normalised dijet + H1 HERA-II (prel.) Systematic uncertainty NLO ⊗ hadr. corr. New predictions MNLO ⊗ hadr. corr. 20 30 40 〈 P_T^{jet} 〉, [GeV] 67 10 20 30 40 $\langle P_{\tau}^{jet} \rangle_2 [GeV]$

67 10


Trijet cross sections

H1prelim-16-062

Double-differential (normalised) Trijet cross sections as a function of Q^2 and $\langle p_T \rangle_3$

- Precision limited by systematic uncertainties over whole kinematic range
- 4 x 8 data points
 - -> Excellent measurement of shape and dependence
- dominated by: Jet energy scale and model uncertainty
- Data precision overshoots NLO precision
- NLO has similar problems in describing the shape at low-Q2 as for dijet cross sections

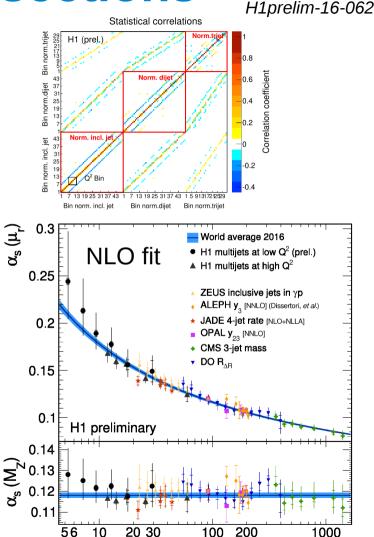
No NNLO calculations available yet

Fits to H1 jet cross sections

All statistical (and syst.) correlations are known

- Low and high-Q² data can be fitted together
- Inclusive jet, dijet and trijet cross sections can be fitted together

-> Basically two quadruple-differential cross section measurement (Q², p_T^{jet} , $\langle P_T \rangle_2$, $\langle P_T \rangle_3$)

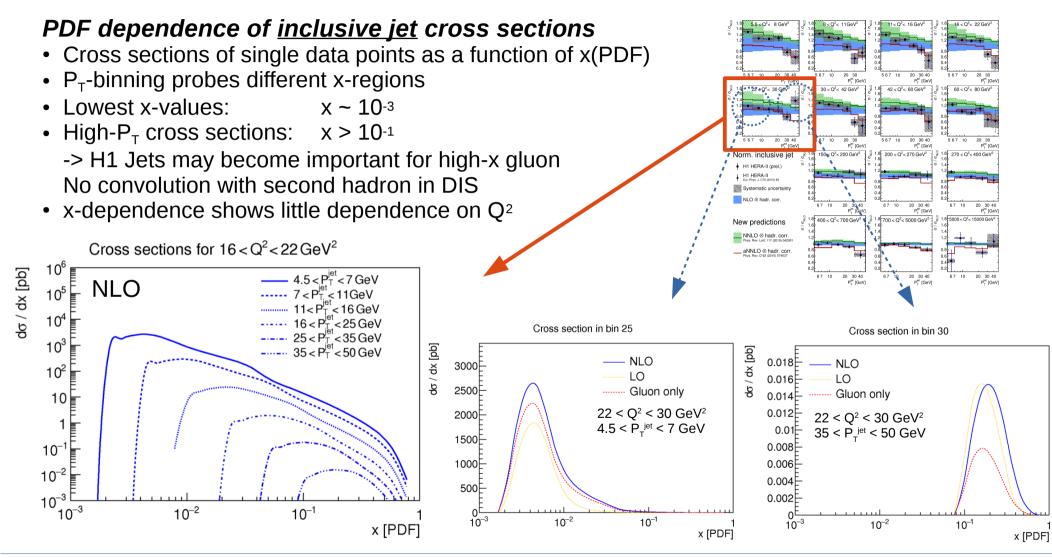

Template for usage of H1 jet data for (PDF-)fits provided

- $\alpha_s(m_z)$ from normalised low-Q² multijets using NLO
- Probe running of $\alpha_{s}(\mu)$ in range 6 < μ < 30 GeV

Very high experimental precision on $\alpha_s(m_z)$

- Use normalised <u>low-Q²</u> and <u>high-Q²</u> H1-multijets
- Experimental precision about 0.4%

-> Data already prepared for use in PDF fits !

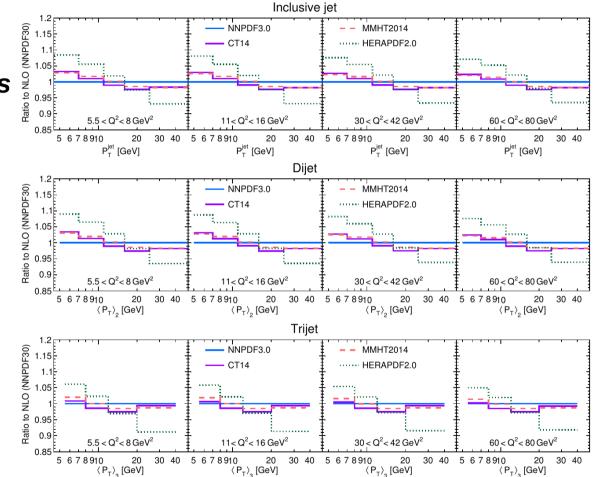


56

10

μ [GeV]

PDF dependence of jet cross sections


Expected sensitivity to PDFs

Predictions using different PDFs

- NLO predictions
- NNPDF30, CT14, MMHT, HERAPDF2.0

Comparison

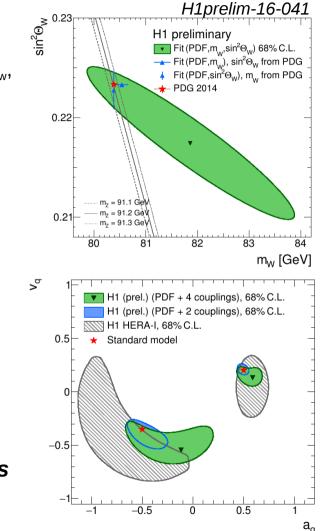
- Agreement of CT14 and MMHT
- NNPDF3.0 predicts harder spectra
- HERAPDF2.0 predicts softer spectra as preferred by data
- High-pT cross sections refer to high-x gluon densities (at low μ_f)

PDF4LHC workshop topics

 13 Sep 2016, 09:0 4-S-030 (CERN) 	0 → 19:00 Europe/Zurich	
	ERN) , Michelangelo Mangano (CERN) , Robert Samu à degli Studi e INFN Milano (IT))	Jel Thome (University College London (UK)) ,
Description	Periodic meeting of the PDF4LHC forum.	
	VIDYO connection will be available	
	For information relative to housing, access to CERN for those http://lpcc.web.cern.ch/LPCC/index.php?page=visit	not holding a CERN card and laptop registration, please check
	Topics will include (tentatively)	
	- Updates of the PDF fit groups	
	- QED PDFs	-
	- New PDF sensitive measurements form the experiments	
	- News from tools e.g. Xfitter	New tools !
	- Ongoing studies within the group	
	The detailed agenda will become available in due time	

H1 electroweak fit and new PDF fitting code

H1 combined QCD + electroweak fit


- H1prelim-16-041
- Fit of <u>electroweak parameters</u> (weak couplings of quarks, m_w , m_z , $sin^2\theta_w$,
 - $G_{\scriptscriptstyle F},$...) and \underline{PDFs} to all H1 structure function data

New (public) fitting framework for PDF and SM fits <u>Alpos</u>

- C++ object-oriented framework
- Well-defined interfaces for new...
 - Data
 - Theoretical predictions (<- Input to those predictions are specified in steering and are not hard-coded)
 - Tasks (e.g. minimizers) or χ^2 functions
- Applicable for <u>PDF fits</u> (H1), $\underline{\alpha}_{s}$ (H1, CMS), <u>SM parameters</u> (H1,ATLAS), ...
- Interfaces to fastNLO, Applgrid, QCDNUM, Apfel, EPRC, TMinuit, APC, LHAPDF, CRunDec, various PDF parameterisations, ...
- Exact reproduction of
 - HERAPDF1.0 and 2.0 PDF fits
 - + H1, CMS and D0 α_{s} fits

New fitting-framework very well suited for fits of PDF and studies involving PDF fits

• Alpos is publicly available on request

Conclusions

New jet cross section measurements from H1

- Jet cross sections measured by H1 from HERA-I and HERA-II data in NC DIS for major kinematic range of HERA
- HERA-II jet cross sections at low and high-Q² with high experimental precision
- H1 jet data is already employed for $\alpha_s(M_z)$ fits
 - -> Template how to use our data in fits is provided

Sensitivity to PDFs

- High sensitivity to high-x gluon
- Disentangling gluon- α_s correlation, by providing precise measurement of α_s itself

New predictions

- Approx. NNLO predictions for inclusive jets available
- Full NNLO predictions available for inclusive jet and dijet cross sections
 -> Interface to fastNLO in progress

Outlook

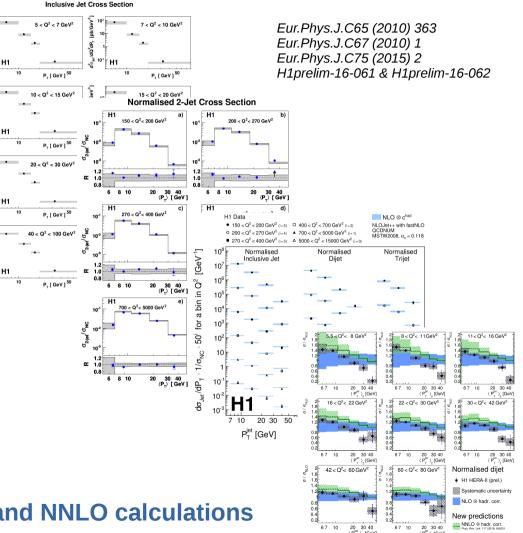
- New H1 HERA-II jet data (@ low-Q²) published by end of this year
- NNLO predictions available as fastNLO-tables by end of this year

History and Outlook

Last missing piece of H1 jet legacy

Process		HERA-I	HERA-II	
Low Q ²	Inclusive jet Dijet Trijet	EPJ C 67 (2010) 1	H1prelim 16-061 H1prelim 16-062	
High Q ²	Inclusive jet Dijet Trijet	EPJ C 65 (2010) 363	EPJ C 75 (2015) 2	

Probe running of α_s over one order of magnitude with all H1 jet data


• Very high experimental precision on $\alpha_s(M_z)$

Contrain PDFs with H1 jet data

- Very high sensitivy to gluon density Particularly at low $\mu_{\rm f}$

HERA-I and HERA-II data can be used together for PDF fits

Finally we arrived: High-precision jet data and NNLO calculations

Predictions	NLO	aNNLO	NNLO	
Jet cross sections				
Program	nlojet++	JetViP	NNLOJET	
pQCD order	NLO [8]	approximate NNLO [12]	NNLO [15]	
Calculation detail	Dipole subtraction	NLO plus NNLO contributions	Antenna subtraction	
	from unified threshold			
		resummation formalism		
NC DIS cross sections				
Program	QCDNUM	APFEL	APFEL	
Heavy quark scheme	ZM-VFNS	FONLL-C	FONLL-C	
Order	NLO	NNLO	NNLO	
PDF	NNPDF3.0_NLO	NNPDF3.0_NNLO	NNPDF3.0_NNLO	
$\alpha_{\rm s}(M_{\rm Z})$	0.118	0.118	0.118	
Hadronisation corrections	Djangoh and Rapgap			
Available for				
Normalised inclusive jet	\checkmark	\checkmark	\checkmark	
Normalised dijet	\checkmark		\checkmark	
Normalised trijet	\checkmark			

Table 2: Summary of the theory predictions for the normalised jet cross sections. All predictions are corrected for hadronisation effects with multiplicative corrections factors obtained from Djangoh and Rapgap.

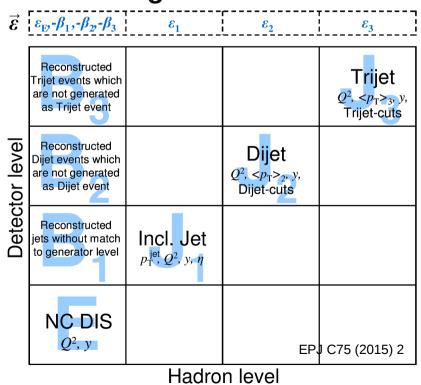
Regularised unfolding

Regularised unfolding using ROOT::TUnfold

Calculate unfolded distribution x by minimising

$$\chi^{2}(x,\tau) = (y - Ax)^{T} V_{y}^{-1} (y - Ax) + \tau L^{2}$$

- Linear analytic solution
- Linear propagation of all uncertainties
- Statistical correlations are considered in V_{v}


Simultaneous unfolding of Inclusive jet, Dijet, Trijet, NC DIS

- Similar to EPJ C75 (2015) 2 -> One measurement of multiple observables
- Matrix constituted from O(10⁶) entries
- Migrations in up to 6 variables considered for a single measurement
- · 'detector-level-only' jets/events are contrained with NC DIS data
- System of linear equation becomes overconstrained when using more bins on detector than on generator level

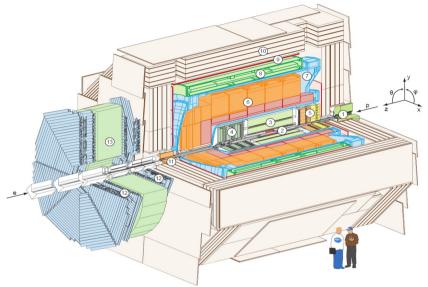
JINST 7 (2012) T10003

- Hadron level х Detector level У V, Covariance matrix А
 - Migration matrix
- тI ² Regularisation term

Migration Matrix

The H1 experiment

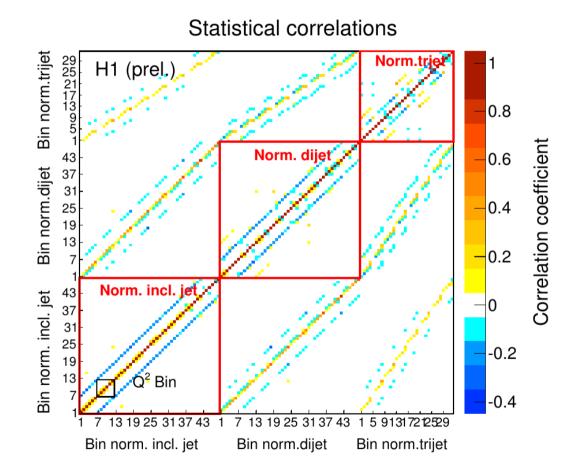
H1 multi-purpose detector


Asymmetric design Trackers

- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters

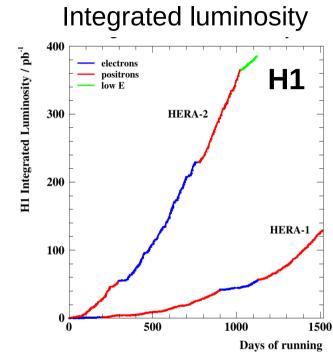
- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter Superconducting solenoid
- 1.15T magnetic field Muon detectors


Drawing of the H1 experiment

Excellent control over experimental uncertainties

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet-calibration with neural networks as functions of η and $p_{\scriptscriptstyle T}$
 - Jet energy scale: 1%
- Luminosity: 2.5%

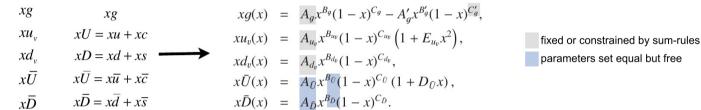
Stat. correlations of H1 low-Q² multijets


The HERA ep collider

HERA ep collider

HERA ep collider in Hamburg

- Data taking periods
 - HERAI: 1994 2000
 - HERA II: 2003 2007
 - Special runs with reduced E_p in 2007
- Delivered integrated luminosity ~ 0.5 fb⁻¹


HERA-II period

- Electron and positron runs
- √s = 319 GeV
 - E_e = 27.6 GeV
 - E_p = 920 GeV
- Analysed int. Luminosity: L = 184 pb⁻¹

H1 EW-fit: methology II

New C++-based fitting code for PDF and more general fits developed (Alpos)

- DGLAP evolution of PDFs in NNLO QCD (QCDNUM with ZMVFNS)
- PDFs are parameterised at starting scale $Q_0^2 = 1.9 \text{GeV}^2$ (similar to HERAPDF2.0)

• Use only data with $Q^2 >= 12 \text{ GeV}^2$

χ² Definition

- Uncertainties on cross sections are assumed to be 'log-normal' distributed (relative uncertainties)
- · Uncertainties on polarisation measurements are assumed to be 'normal' distributed
- · Correlations of syst. uncertainties between different datasets are considered

$$\chi^{2} = (\log(d) - \log(t))^{T} V_{R}^{-1} (\log(d) - \log(t)) + (d - t)^{T} V_{A}^{-1} (d - t)$$

Fit parameters

- 13 PDF parameters
- 4 polarisation values
- 4 Light-quark couplings (or other SM parameters)
- More general also 'nuisance parameters' of syst. uncertainties