The LUX approach to the photon PDF

P. Nason
in collaboration with A. Manohar, G. Salam and G. Zanderighi

INFN, sez. di Milano Bicocca

CERN, September 13, 2016

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

Outline

- The Master Equation
- The LUX PDF set
- Structure functions data
- Elastic data
- Uncertainties
- Some applications
- LUX and Hoppet resources
- Conclusions

The Master Equation

$$
\begin{aligned}
& \sigma=\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}{ }^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \left.p\left|J_{\mu}(q) J_{\nu}(0)\right| p\right\rangle \\
& Q^{2}=-q^{2}>0,
\end{aligned}
$$

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{b j}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.
$\Rightarrow \frac{1}{4 \pi}\langle p| \tilde{J}_{, \prime}(q) J_{\nu}(0)|p\rangle=-g_{\mu,}, F_{1}\left(Q^{2}, x_{b j}\right)+\frac{p^{\mu \mu} p^{\nu}}{p \cdot q} F_{2}\left(Q^{2}, x_{b j}\right)+\ldots$ (Notice: full F_{1} and F_{2}, not only inelastic)
- Photon induced process can be given in terms of F_{1}, F_{2}
- Hence: the photon PDF must be calculable in terms of F_{1}, F_{2}.

The Master Equation

$$
\begin{aligned}
\sigma & =\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \times\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle
\end{aligned}
$$

Kinematics constraints:

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{\mathrm{bj}}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.
$\begin{aligned}- & \frac{1}{4}\langle p| \tilde{J}_{\prime \prime}(q) J_{\nu,}(0)|p\rangle=-g_{, \ldots,} F_{1}\left(Q^{2}, x_{\mathrm{bj}}\right)+\frac{p^{\mu \mu} p^{\mu}}{p^{\prime} \cdot q} F_{2}\left(Q^{2}, x_{b j}\right)+\ldots \\ & \text { (Notice: full } F_{1} \text { and } F_{2} \text {, not only inelastic) }\end{aligned}$
- Photon induced process can be given in terms of F_{1}, F_{2}
- Hence: the photon PDF must be calculable in terms of F_{1}, F_{2}

The Master Equation

$$
\begin{aligned}
\sigma & =\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \times\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle
\end{aligned}
$$

Kinematics constraints:

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{\mathrm{bj}}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.

- Photon induced process can be given in terms of F_{1}, F_{2}
- Hence: the photon PDF must be calculable in terms of F_{1}, F_{2}.

The Master Equation

$$
\begin{aligned}
\sigma & =\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \times\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle
\end{aligned}
$$

Kinematics constraints:

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{\mathrm{bj}}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.

The Master Equation

$$
\begin{aligned}
\sigma & =\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \times\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle
\end{aligned}
$$

Kinematics constraints:

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{\mathrm{bj}}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.
- $\frac{1}{4 \pi}\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle=-g_{\mu \nu} F_{1}\left(Q^{2}, x_{\mathrm{bj}}\right)+\frac{p^{\mu} p^{\nu}}{p \cdot q} F_{2}\left(Q^{2}, x_{\mathrm{bj}}\right)+\ldots$ (Notice: full F_{1} and F_{2}, not only inelastic)
- Photon induced process can be given in terms of F_{1}, F_{2}
\square

The Master Equation

$$
\begin{aligned}
\sigma & =\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \times\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle
\end{aligned}
$$

Kinematics constraints:

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{\mathrm{bj}}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.
- $\frac{1}{4 \pi}\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle=-g_{\mu \nu} F_{1}\left(Q^{2}, x_{\mathrm{bj}}\right)+\frac{p^{\mu} p^{\nu}}{p \cdot q} F_{2}\left(Q^{2}, x_{\mathrm{bj}}\right)+\ldots$ (Notice: full F_{1} and F_{2}, not only inelastic)
- Photon induced process can be given in terms of F_{1}, F_{2}

The Master Equation

$$
\begin{aligned}
\sigma & =\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \frac{e_{\text {phys }}^{4}\left(q^{2}\right)}{q^{4}} \\
& \times\langle k| \tilde{J}_{p}^{\mu}(-q) J_{p}^{\nu}(0)|k\rangle \\
& \times\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle
\end{aligned}
$$

Kinematics constraints:

$$
\begin{aligned}
& Q^{2}=-q^{2}>0 \\
& 0<x_{\mathrm{bj}}=Q^{2} /(2 p \cdot q) \leq 1
\end{aligned}
$$

- Same kinematic restrictions as in DIS.
- $\frac{1}{4 \pi}\langle p| \tilde{J}_{\mu}(q) J_{\nu}(0)|p\rangle=-g_{\mu \nu} F_{1}\left(Q^{2}, x_{\mathrm{bj}}\right)+\frac{p^{\mu} p^{\nu}}{p \cdot q} F_{2}\left(Q^{2}, x_{\mathrm{bj}}\right)+\ldots$ (Notice: full F_{1} and F_{2}, not only inelastic)
- Photon induced process can be given in terms of F_{1}, F_{2}
- Hence: the photon PDF must be calculable in terms of F_{1}, F_{2}.
- Take a BSM interaction of the form $\frac{e}{\Lambda} \bar{T}\left[\gamma^{\mu}, \gamma^{\nu}\right] L F_{\mu \nu}+c c$, I massless, L massive with mass M, both neutral.
- Compute the cross section with the Master Formula
- Compute the cross section with the Parton Model formula
- Extract f_{γ} by identifying the two cross sections.

We obtain in the $\overline{\mathrm{MS}}$ scheme at NLO:

- Take a BSM interaction of the form $\frac{e}{\Lambda} \bar{I}\left[\gamma^{\mu}, \gamma^{\nu}\right] L F_{\mu \nu}+\mathrm{cc}$, $/$ massless, L massive with mass M, both neutral.
- Compute the cross section with the Master Formula
- Compute the cross section with the Parton Model formula
- Extract f_{\sim} by identifying the two cross sections.

We obtain in the $\overline{\mathrm{MS}}$ scheme at NLO:

- Take a BSM interaction of the form $\frac{e}{\Lambda} \bar{I}\left[\gamma^{\mu}, \gamma^{\nu}\right] L F_{\mu \nu}+\mathrm{cc}$, $/$ massless, L massive with mass M, both neutral.
- Compute the cross section with the Master Formula
- Compute the cross section with the Parton Model formula - Extract f_{γ} by identifying the two cross sections. We obtain in the $\overline{\mathrm{MS}}$ scheme at NIO.
- Take a BSM interaction of the form $\frac{e}{\Lambda} \bar{T}\left[\gamma^{\mu}, \gamma^{\nu}\right] L F_{\mu \nu}+\mathrm{cc}$, I massless, L massive with mass M, both neutral.
- Compute the cross section with the Master Formula
- Compute the cross section with the Parton Model formula
- Extract f_{γ} by identifying the two cross sections.

We obtain in the MS scheme at NLO:

- Take a BSM interaction of the form $\frac{e}{\Lambda} \bar{T}\left[\gamma^{\mu}, \gamma^{\nu}\right] L F_{\mu \nu}+\mathrm{cc}$, I massless, L massive with mass M, both neutral.
- Compute the cross section with the Master Formula
- Compute the cross section with the Parton Model formula
- Extract f_{γ} by identifying the two cross sections.

We obtain in the $\overline{\mathrm{MS}}$ scheme at NLO:

- Take a BSM interaction of the form $\frac{e}{\Lambda} \bar{T}\left[\gamma^{\mu}, \gamma^{\nu}\right] L F_{\mu \nu}+\mathrm{cc}$, I massless, L massive with mass M, both neutral.
- Compute the cross section with the Master Formula
- Compute the cross section with the Parton Model formula
- Extract f_{γ} by identifying the two cross sections.

We obtain in the $\overline{\mathrm{MS}}$ scheme at NLO:
$\overline{\mathrm{MS}}$ correction

$$
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi} \int_{x}^{1} \frac{d z}{z}\{-\overbrace{\alpha\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)}
$$

- $f_{\gamma} \approx \alpha \log \frac{\mu^{2}}{m_{p}^{2}} \approx \alpha / \alpha_{S}$ relative to $f_{u / d}\left(\alpha_{s}\left(\mu^{2}\right) \approx 1 / \log \frac{\mu^{2}}{\Lambda^{2}}\right)$
- $Q^{2} \approx m_{p}^{2}$ region formally of order α, i.e. NLO (as $\overline{\mathrm{MS}}$ term).
- Straightforward to improve at NNLO in α_{s} (Master Equation is exact, compute the parton model process at NNLO)
- Also accurate at $\left(\alpha / \alpha_{s}\right)^{2}$, provided that $\alpha\left(Q^{2}\right)$ and F_{2} include leading log electromagnetic evolution.
- Valid at all μ 's: MUST match evolution accuracy with one extra α_{s}. Agrees with De FLorian, Sborlini, Rodrigo $\alpha \alpha_{s}$
splitting functions, arXiv:1512.00612.

$$
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi} \int_{x}^{1} \frac{d z}{z}\{-\overbrace{\alpha\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)}
$$

$$
+\underbrace{\left.\left.\left.\int_{\frac{\mu^{2}}{2-2} m_{2}^{2}}^{\frac{\mu^{2}}{1-2}} \frac{d Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left[\left(\left(1+(1-z)^{2}\right)+\frac{2 x^{2} m_{\rho}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]\right\},\right\}\right\}}_{\mathcal{O}\left(\log \frac{\mu^{2}}{m_{p}}\right)}
$$

- $f_{\gamma} \approx \alpha \log \frac{\mu^{2}}{m_{p}^{2}} \approx \alpha / \alpha_{s}$ relative to $f_{u / d}\left(\alpha_{s}\left(\mu^{2}\right) \approx 1 / \log \frac{\mu^{2}}{\Lambda^{2}}\right)$.
- Straightforward to improve at NNLO in α_{s} (Master Equation is exact, compute the parton model process at NNLO)
- Also accurate at $\left(\alpha / \alpha_{s}\right)^{2}$, provided that $\alpha\left(Q^{2}\right)$ and F_{2} include leading log electromagnetic evolution.
- Valid at all μ 's: MUST match evolution accuracy with one extra α_{s}. Agrees with De FLorian, Sborlini, Rodrigo $\alpha \alpha_{s}$
splitting functions, arXiv:1512.00612.

$$
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi} \int_{x}^{1} \frac{d z}{z}\{-\overbrace{\alpha\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)}
$$

$$
+\underbrace{\int_{\frac{x^{2} m_{p}^{2}}{1-2}}^{\overbrace{\mu^{2}}^{1-2}} \frac{d Q^{2}}{Q^{2}}}_{\mathcal{O}\left(\log \frac{\mu^{2}}{m_{p}^{2}}\right)} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left[\left(\left(1+(1-z)^{2}\right)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]\} .
$$

- $f_{\gamma} \approx \alpha \log \frac{\mu^{2}}{m_{p}^{2}} \approx \alpha / \alpha_{s}$ relative to $f_{u / d}\left(\alpha_{s}\left(\mu^{2}\right) \approx 1 / \log \frac{\mu^{2}}{\Lambda^{2}}\right)$.
- $Q^{2} \approx m_{p}^{2}$ region formally of order α, i.e. NLO (as $\overline{\mathrm{MS}}$ term).
- Straightforward to improve at NNLO in α_{s} (Master Equation is exact, compute the parton model process at NNLO)
- Also accurate at $\left(\alpha / \alpha_{s}\right)^{2}$ provided that $\alpha\left(Q^{2}\right)$ and F_{2} include leading log electromagnetic evolution.
- Valid at all μ 's: MUST match evolution accuracy with one extra α_{s}. Agrees with De FLorian, Sborlini, Rodrigo $\alpha \alpha_{s}$

$$
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi} \int_{x}^{1} \frac{d z}{z}\{-\overbrace{\alpha\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)}
$$

$$
+\underbrace{\int_{x^{2} m^{2}}^{\frac{\mu^{2}}{12}}} \stackrel{\frac{d Q^{2}}{\text { Ms }}}{\frac{d}{1-2}} \frac{Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left[\left(\left(1+(1-z)^{2}\right)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]\} .
$$

$$
\mathcal{O}\left(\log \frac{\mu^{2}}{m_{p}^{2}}\right)
$$

- $f_{\gamma} \approx \alpha \log \frac{\mu^{2}}{m_{p}^{2}} \approx \alpha / \alpha_{s}$ relative to $f_{u / d}\left(\alpha_{s}\left(\mu^{2}\right) \approx 1 / \log \frac{\mu^{2}}{\Lambda^{2}}\right)$.
- $Q^{2} \approx m_{p}^{2}$ region formally of order α, i.e. NLO (as $\overline{\mathrm{MS}}$ term).
- Straightforward to improve at NNLO in α_{s} (Master Equation is exact, compute the parton model process at NNLO)
- Also accurate at $\left(\alpha / \alpha_{s}\right)^{2}$, provided that $\alpha\left(Q^{2}\right)$ and F_{2} include leading log electromagnetic evolution.

$$
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi} \int_{x}^{1} \frac{d z}{z}\{-\overbrace{\alpha\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)}
$$

> Ms
> $+\underbrace{\int_{\frac{x^{2}-2}{2}-2}^{\frac{\mu_{2}^{2}}{1-2}}} \frac{d Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left[\left(\left(1+(1-z)^{2}\right)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]\}$.
> $\mathcal{O}\left(\log \frac{\mu^{2}}{m_{p}^{2}}\right)$

- $f_{\gamma} \approx \alpha \log \frac{\mu^{2}}{m_{p}^{2}} \approx \alpha / \alpha_{s}$ relative to $f_{u / d}\left(\alpha_{s}\left(\mu^{2}\right) \approx 1 / \log \frac{\mu^{2}}{\Lambda^{2}}\right)$.
- $Q^{2} \approx m_{p}^{2}$ region formally of order α, i.e. NLO (as $\overline{\mathrm{MS}}$ term).
- Straightforward to improve at NNLO in α_{s} (Master Equation is exact, compute the parton model process at NNLO)
- Also accurate at $\left(\alpha / \alpha_{s}\right)^{2}$, provided that $\alpha\left(Q^{2}\right)$ and F_{2} include leading log electromagnetic evolution.

$$
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi} \int_{x}^{1} \frac{d z}{z}\{-\overbrace{\alpha\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)}
$$

> Ms
> $+\underbrace{\int_{0}^{\frac{\mu^{2}}{1-2} m_{2}^{2}}} \stackrel{d Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left[\left(\left(1+(1-z)^{2}\right)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]\}$
> $\mathcal{O}\left(\log \frac{\mu^{2}}{m_{p}^{2}}\right)$

- $f_{\gamma} \approx \alpha \log \frac{\mu^{2}}{m_{\rho}^{2}} \approx \alpha / \alpha_{s}$ relative to $f_{u / d}\left(\alpha_{s}\left(\mu^{2}\right) \approx 1 / \log \frac{\mu^{2}}{\Lambda^{2}}\right)$.
- $Q^{2} \approx m_{p}^{2}$ region formally of order α, i.e. NLO (as $\overline{\mathrm{MS}}$ term).
- Straightforward to improve at NNLO in α_{s} (Master Equation is exact, compute the parton model process at NNLO)
- Also accurate at $\left(\alpha / \alpha_{s}\right)^{2}$, provided that $\alpha\left(Q^{2}\right)$ and F_{2} include leading log electromagnetic evolution.
- Valid at all μ 's: MUST match evolution accuracy with one extra α_{s}. Agrees with De FLorian, Sborlini, Rodrigo $\alpha \alpha_{s}$ splitting functions, arXiv:1512.00612.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}
Much can be done without performing a dedicated global fit.
However, if we aim at NLO accuracy:
- Low Q^{2} region cannot be neglected.
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the QED evolution of the quarks are small, just do something minimal to account for them.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}

Much can be done without performing a dedicated global fit. However, if we aim at NLO accuracy:

- Low Q^{2} region cannot be neglected.
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the QED evolution of the quarks are small, just do something minimal to account for them.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}

Much can be done without performing a dedicated global fit. However, if we aim at NLO accuracy:

- Low Q^{2} region cannot be neglected
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the QED evolution of the quarks are small, just do something minimal to account for them.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}
Much can be done without performing a dedicated global fit.
However, if we aim at NLO accuracy:
- Low Q^{2} region cannot be neglected
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the QED evolution of the quarks are small, just do something minimal to account for them

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2} Much can be done without performing a dedicated global fit. However, if we aim at NLO accuracy:
> - Low Q^{2} region cannot be neglected.
> - $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
> $\Rightarrow\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the QED evolution of the quarks are small, just do something minimal to account for them.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}
Much can be done without performing a dedicated global fit. However, if we aim at NLO accuracy:
- Low Q^{2} region cannot be neglected.
$\Rightarrow\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling

$-\left(\alpha / a_{s}\right)^{2}$ tems aisising foom the QED evolution of the quarks are small, just do something minimal to account for them.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}
Much can be done without performing a dedicated global fit. However, if we aim at NLO accuracy:
- Low Q^{2} region cannot be neglected.
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
are small, just do something minimal to account for them.

Use:

Ideal use:

- Get $F_{2 / L}$ at low Q^{2} from available data.
- PDF global fit, including EM evolution, with the photon density constrained by the previous equation, $F_{2 / L}$ taken from data at low Q^{2} and computed from the PDF's at high Q^{2}
Much can be done without performing a dedicated global fit. However, if we aim at NLO accuracy:
- Low Q^{2} region cannot be neglected.
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the evolution of QED coupling cannot be neglected $\left.\left(\alpha\left(m_{\mu}^{2}\right)\right) / \alpha\left(M_{Z}^{2}\right) \approx 0.94\right)$
- $\left(\alpha / \alpha_{s}\right)^{2}$ terms arising from the QED evolution of the quarks are small, just do something minimal to account for them.

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Evolve down to 10 GeV , including QED evolution only for splitting processes that affect the photon: $P_{\gamma q}, P_{\gamma g}, P_{\gamma \gamma}$ (with $\alpha \alpha_{s}$ terms included).
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed).
- Evolve un including full QED evolution (with αa_{s} terms included).

This procedure is such that the structure functions at a scale of 10 GeV , where they are strongly data constrained, remain consistent with the new pdf set, while the $\left(\alpha / \alpha_{s}\right)^{2}$ due to photon radiation are included in the quark distributions at high sçale

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Evolve down to 10 GeV , including QED evolution only for splitting processes that affect the photon: $P_{\gamma q}, P_{\gamma g}, P_{\gamma}$ (with $\alpha \alpha_{s}$ terms included).
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed).
- Evolve up including full QED evolution (with $\alpha \alpha_{s}$ terms included)

This procedure is such that the structure functions at a scale of 10 GeV , where they are strongly data constrained, remain consistent with the new pdf set, while the $\left(\alpha / \alpha_{s}\right)^{2}$ due to photon radiation are included in the quark distributions at high scale e.

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed)
- Evolve up including full QED evolution (with $\alpha \alpha_{s}$ terms

This procedure is such that the structure functions at a scale of 10
GeV , where they are strongly data constrained, remain consistent
with the new pdf set, while the $\left(\alpha / \alpha_{s}\right)^{2}$ due to photon radiation

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Evolve down to 10 GeV , including QED evolution only for splitting processes that affect the photon: $P_{\gamma q}, P_{\gamma g}, P_{\gamma \gamma}$ (with $\alpha \alpha_{s}$ terms included).
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed)
- Evolve up including full QED evolution (with a as terms included)

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Evolve down to 10 GeV , including QED evolution only for splitting processes that affect the photon: $P_{\gamma q}, P_{\gamma g}, P_{\gamma \gamma}$ (with $\alpha \alpha_{s}$ terms included).
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed).

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Evolve down to 10 GeV , including QED evolution only for splitting processes that affect the photon: $P_{\gamma q}, P_{\gamma g}, P_{\gamma \gamma}$ (with $\alpha \alpha_{s}$ terms included).
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed).
- Evolve up including full QED evolution (with $\alpha \alpha_{s}$ terms included).

The LUX PDF set

- Start from a standard set (e.g. PDF4LHC15_nnlo_100);
- Compute the photon PDF at $\mu=100 \mathrm{GeV}$, with the low Q^{2} component determined from A1, CLAS and Hermes GD11-P fits, and the high Q^{2} part determined from the input PDF with standard NNLO coefficient functions.
- Evolve down to 10 GeV , including QED evolution only for splitting processes that affect the photon: $P_{\gamma q}, P_{\gamma g}, P_{\gamma \gamma}$ (with $\alpha \alpha_{s}$ terms included).
- Fix the momentum sum rule by rescaling the gluon (a factor of 0.99299 is needed).
- Evolve up including full QED evolution (with $\alpha \alpha_{s}$ terms included).

This procedure is such that the structure functions at a scale of 10 GeV , where they are strongly data constrained, remain consistent with the new pdf set, while the $\left(\alpha / \alpha_{s}\right)^{2}$ due to photon radiation are included in the quark distributions at high scale.

Fitted data from $Q^{2}=0.225$ to 4.725 in steps of $0.05 \mathrm{GeV}^{2}$

Fitted data from $Q^{2}=0.225$ to 4.725 in steps of $0.05 \mathrm{GeV}^{2}$

Hermes fit: we are interested in

Fitted data from $Q^{2}=0.225$ to
4.725 in steps of $0.05 \mathrm{GeV}^{2}$.

Fitted data from $Q^{2}=0.225$ to 4.725 in steps of $0.05 \mathrm{GeV}^{2}$. Hermes fit: we are interested in the region $Q^{2}<10 \mathrm{GeV}^{2}$. Continuum data region: $4 \mathrm{GeV}^{2}<W^{2} \lesssim 10^{5} \mathrm{GeV}^{2}\left(x \rightarrow 10^{-4}\right)$.

Inelastic Data coverage

At small $Q^{2}, \sigma_{T} \Longrightarrow \sigma_{\gamma p}(W)$, becoming a function of W only (the $C M$ energy in photoproduction), and σ_{L} vanishes.
Photoproduction data included in Hermes and Christy-Bosted
parametrizations.

Inelastic Data coverage

- Low Q^{2} continuum essentially covered by data.

	F_{2} and F_{L} must vanish as
Q^{2} and Q^{4} at constant W	
	$\left(\right.$ by analiticity of $\left.W^{\mu \nu}\right)$.

Also:

At small $Q^{2}, \sigma_{T} \Longrightarrow \sigma_{\gamma p}(W)$, becoming a function of W only (the $C M$ energy in photoproduction), and σ_{L} vanishes.
Photoproduction data included in Hermes and Christy-Bosted

Inelastic Data coverage

- Low Q^{2} continuum essentially covered by data.
- F_{2} and F_{L} must vanish as Q^{2} and Q^{4} at constant W (by analiticity of $W^{\mu \nu}$).

At small $Q^{2}, \sigma_{T} \Longrightarrow \sigma_{\gamma p}(W)$, becoming a function of W only (the $C M$ energy in photoproduction), and σ_{L} vanishes.
Photoproduction data included in Hermes and Christy-Bosted

Inelastic Data coverage

- Low Q^{2} continuum essentially covered by data.
- F_{2} and F_{L} must vanish as Q^{2} and Q^{4} at constant W (by analiticity of $W^{\mu \nu}$).

Also:
$F_{2}\left(x, Q^{2}\right)=\frac{1}{4 \pi^{2} \alpha} \frac{Q^{2}(1-x)}{1+\frac{4 x^{2} m_{\rho}^{2}}{Q^{2}}}\left(\sigma_{T}\left(x, Q^{2}\right)+\sigma_{L}\left(x, Q^{2}\right)\right) \underset{Q^{2} \rightarrow 0}{\Longrightarrow} \frac{Q^{2} \sigma_{\gamma p}(W)}{4 \pi^{2} \alpha^{2}}$.
At small $Q^{2}, \sigma_{T} \Longrightarrow \sigma_{\gamma p}(W)$, becoming a function of W only (the $C M$ energy in photoproduction), and σ_{L} vanishes.
Photoproduction data included in Hermes and Christy-Bosted parametrizations.

Elastic Contribution

F_{2} and F_{L} receive an elastic contribution that we must include:

$$
\begin{aligned}
& F_{2}^{\mathrm{el}}=\frac{G_{E}^{2}\left(Q^{2}\right)+G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau} \delta(1-x), \\
& F_{L}^{\mathrm{el}}=\frac{G_{E}^{2}\left(Q^{2}\right)}{\tau} \delta(1-x),
\end{aligned}
$$

with $\tau=Q^{2} /\left(4 m_{p}^{2}\right)$. In the dipole approximation
$G_{E}\left(Q^{2}\right)=\frac{1}{\left(1+Q^{2} / m_{\mathrm{dip}}^{2}\right)^{2}}, G_{M}\left(Q^{2}\right)=\mu_{p} G_{E}\left(Q^{2}\right), \quad \begin{aligned} & m_{\mathrm{dip}}^{2}=0.71 \mathrm{GeV}^{2} \\ & \mu_{P}=2.793\end{aligned}$
so that the elastic contribution falls rapidly with Q^{2}.

Elastic Contribution

F_{2} and F_{L} receive an elastic contribution that we must include:

$$
\begin{aligned}
F_{2}^{\mathrm{el}} & =\frac{G_{E}^{2}\left(Q^{2}\right)+G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau} \delta(1-x) \\
F_{L}^{\mathrm{el}} & =\frac{G_{E}^{2}\left(Q^{2}\right)}{\tau} \delta(1-x)
\end{aligned}
$$

with $\tau=Q^{2} /\left(4 m_{p}^{2}\right)$. In the dipole approximation
so that the elastic contribution falls rapidly with Q^{2}.

Elastic Contribution

F_{2} and F_{L} receive an elastic contribution that we must include:

$$
\begin{aligned}
F_{2}^{\mathrm{el}} & =\frac{G_{E}^{2}\left(Q^{2}\right)+G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau} \delta(1-x) \\
F_{L}^{\mathrm{el}} & =\frac{G_{E}^{2}\left(Q^{2}\right)}{\tau} \delta(1-x)
\end{aligned}
$$

with $\tau=Q^{2} /\left(4 m_{p}^{2}\right)$. In the dipole approximation

$$
G_{E}\left(Q^{2}\right)=\frac{1}{\left(1+Q^{2} / m_{\mathrm{dip}}^{2}\right)^{2}}, G_{M}\left(Q^{2}\right)=\mu_{p} G_{E}\left(Q^{2}\right), \quad \begin{aligned}
& m_{\mathrm{dip}}^{2}=0.71 \mathrm{GeV}^{2} \\
& \mu_{p}=2.793
\end{aligned}
$$

so that the elastic contribution falls rapidly with Q^{2}.

The elastic contribution to f_{γ} is $\begin{aligned} x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{D}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{d Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\ & \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .\end{aligned}$

Dipole approximation, ($\mu \rightarrow \infty$ in figure.)

- Mostly G_{E} at small x.
- Mostly G_{M} at large x.
- Mostly from $Q^{2}<1 \mathrm{GeV}$.

The elastic contribution to f_{γ} is

$$
\begin{aligned}
x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{D}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\
& \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .
\end{aligned}
$$

Dipole approximation,

The elastic contribution to f_{γ} is

$$
\begin{aligned}
x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{0}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\
& \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .
\end{aligned}
$$

Dipole approximation, ($\mu \rightarrow \infty$ in figure.)

The elastic contribution to f_{γ} is

$$
\begin{aligned}
x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{0}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\
& \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .
\end{aligned}
$$

Dipole approximation, ($\mu \rightarrow \infty$ in figure.)

- Mostly G_{E} at small x.

The elastic contribution to f_{γ} is

$$
\begin{aligned}
x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{0}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\
& \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .
\end{aligned}
$$

Dipole approximation, ($\mu \rightarrow \infty$ in figure.)

- Mostly G_{E} at small x.
- Mostly G_{M} at large x.

The elastic contribution to f_{γ} is

$$
\begin{aligned}
x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{0}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\
& \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .
\end{aligned}
$$

Dipole approximation, ($\mu \rightarrow \infty$ in figure.)

- Mostly G_{E} at small x.
- Mostly G_{M} at large x.
- Mostly from $Q^{2}<1 \mathrm{GeV}$.

Elastic Data, A1 experiment and World data

$G_{E} / G_{E}^{\text {dipole }}$
$G_{M} / G_{M}^{\text {dipole }}$

Contributions to f_{γ} :

$\Rightarrow Q^{2}>9 \mathrm{GeV}^{2}$, computed from standard PDF sets

- Important elastic component. Magnetic prevails for $x>0.2$.
- Continuum and resonance contributions not negligible
- Very important contribution from $Q^{2}<1 \mathrm{GeV}^{2}$

Contributions to f_{γ} :

- $Q^{2}>9 \mathrm{GeV}^{2}$, computed from standard PDF sets
- Important elastic component. Magnetic prevails for $x>0.2$.
- Continuum and resonance contributions not negligible - Very important contribution from $Q^{2}<1 \mathrm{GeV}^{2}$

Contributions to f_{γ} :

- $Q^{2}>9 \mathrm{GeV}^{2}$, computed from standard PDF sets
- Important elastic component. Magnetic prevails for $x>0.2$.
- Continuum and resonance contributions not negligible - Very important contribution from $Q^{2}<1 \mathrm{GeV}^{2}$

Contributions to f_{γ} :

- $Q^{2}>9 \mathrm{GeV}^{2}$, computed from standard PDF sets
- Important elastic component. Magnetic prevails for $x>0.2$.
- Continuum and resonance contributions not negligible
- Very important contribution from $Q^{2}<1 \mathrm{GeV}^{2}$

Contributions to f_{γ} :

- $Q^{2}>9 \mathrm{GeV}^{2}$, computed from standard PDF sets
- Important elastic component. Magnetic prevails for $x>0.2$.
- Continuum and resonance contributions not negligible
- Very important contribution from $Q^{2}<1 \mathrm{GeV}^{2}$.

Uncertainties

- At small x, higher order effects and PDF's dominate the error
- At large x, elastic and resonant region dominant.
- Total uncertainty at the nercent level

Further improvements possible!

Uncertainties

- At small x, higher order effects and PDF's dominate the error.
- At large x, elastic and resonant region dominant.
- Total uncertainty at the percent level. Further improvements possible!

Uncertainties

- At small x, higher order effects and PDF's dominate the error.
- At large x, elastic and resonant region dominant.
- Total uncertainty at the percent level. Further improvements possible!

Uncertainties

- At small x, higher order effects and PDF's dominate the error.
- At large x, elastic and resonant region dominant.
- Total uncertainty at the percent level.

Further improvements possible!

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist
component.
- 104: Use 'World' elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{M S}$ term.
All errors are taken as symmetric.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist
component.
- 104: Use 'World' elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$.
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{M S}$ term.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World' elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{M S}$ term.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World' elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{M S}$ term.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World" elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{M S}$ term.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World" elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.

All errors are taken as symmetric.

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World' elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$.
\square

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World" elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$.
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{M S}$ term.
All errors are taken as symmetric.

Since it only relies upon knowledge of the quark distributions, the LUX method achieves by far better precision than other methods.

Approaches that use some lepton scattering information (in particular CT14qed_inc) do achieve better precision (note different y axis in panel).

APPLICATION TO HIGGS PHYSICS

$\mathrm{pp} \rightarrow \mathrm{HW}^{+}\left(\rightarrow \mathrm{l}^{+} \mathrm{v}\right)+\mathrm{X}$ at 13 TeV

non-photon numbers from LHCHXSWG (YR4)

di-lepton spectrum

LUXQED photon has few \% effect on di-lepton spectrum and negligible uncertainties

RESOURCES

> LUXqed_plus_PDF4LHC15_nnlo_100 set available from LHAPDF
> Additional plots and validation info available from http://cern.ch/luxqed
> Preliminary version of HOPPET DGLAP evolution code with QED (order α and $\alpha \alpha_{s}$) corrections available from hepforge:
svn checkout http://hoppet.hepforge.org/svn/branches/qed hoppet-qed (look at tests/with-lhapdf/test_qed_evol_lhapdf.f90 for an example; interface may change, documentation missing)

Conclusions

- Photon PDF can be extracted with great precision from available knowledge of proton structure function and form factors.
- The needed low Q^{2} data is available thanks to extensive low and intermediate energy Nuclear Physics studies.
- Our study aimed at NLO precision including terms suppressed by one power of α_{s} or by a power of α / α_{s} relative to the leading term. This leads to precisions at the percent level.
- The study of structure functions and form factors at low energy is still ongoing in the Nuclear Physics Community (further progress will come).
- It is possible to go to higher orders.

Conclusions

- Photon PDF can be extracted with great precision from available knowledge of proton structure function and form factors.
- The needed low Q^{2} data is available thanks to extensive low and intermediate energy Nuclear Physics studies.
- Our study aimed at NIO precision including terms suppressed by one power of α_{s} or by a power of α / α_{s} relative to the leading term. This leads to precisions at the percent level
- The study of structure functions and form factors at low energy is still ongoing in the Nuclear Physics Community (further progress will come)
- It is possible to go to higher orders.

Conclusions

- Photon PDF can be extracted with great precision from available knowledge of proton structure function and form factors.
- The needed low Q^{2} data is available thanks to extensive low and intermediate energy Nuclear Physics studies.
- Our study aimed at NLO precision including terms suppressed by one power of α_{s} or by a power of α / α_{s} relative to the leading term. This leads to precisions at the percent level
- The study of structure functions and form factors at low energy is still ongoing in the Nuclear Physics Community (further progress will come)
- It is possible to go to higher orders.

Conclusions

- Photon PDF can be extracted with great precision from available knowledge of proton structure function and form factors.
- The needed low Q^{2} data is available thanks to extensive low and intermediate energy Nuclear Physics studies.
- Our study aimed at NLO precision including terms suppressed by one power of α_{s} or by a power of α / α_{s} relative to the leading term. This leads to precisions at the percent level.
- The study of structure functions and form factors at low energy is still ongoing in the Nuclear Physics Community (further progress will come)
- It is possible to go to higher orders.

Conclusions

- Photon PDF can be extracted with great precision from available knowledge of proton structure function and form factors.
- The needed low Q^{2} data is available thanks to extensive low and intermediate energy Nuclear Physics studies.
- Our study aimed at NLO precision including terms suppressed by one power of α_{s} or by a power of α / α_{s} relative to the leading term. This leads to precisions at the percent level.
- The study of structure functions and form factors at low energy is still ongoing in the Nuclear Physics Community (further progress will come).
- It is possible to go to higher orders.

Conclusions

- Photon PDF can be extracted with great precision from available knowledge of proton structure function and form factors.
- The needed low Q^{2} data is available thanks to extensive low and intermediate energy Nuclear Physics studies.
- Our study aimed at NLO precision including terms suppressed by one power of α_{s} or by a power of α / α_{s} relative to the leading term. This leads to precisions at the percent level.
- The study of structure functions and form factors at low energy is still ongoing in the Nuclear Physics Community (further progress will come).
- It is possible to go to higher orders.

EXTRA SLIDES

Impact of QED evolution

ratio of ATLAS photon (1606.01736) to LUXqed

ATLAS result based on reweighting of NNPDF23 with highmass ($\mathrm{M}_{\mathrm{ll}}>116 \mathrm{GeV}$) data

