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Outline

• Photon PDF: motivation/previous approaches.

• Importance of the coherent component: our work.

• Predictions for the LHC/FCC.

• LUXqed: comparison.



The photon PDF

• In era of high precision phenomenology at the LHC: NNLO 
calculations rapidly becoming the ‘standard’. However:

• Thus at this level of accuracy, must consider a proper account of 
EW corrections. At LHC these can be relevant for a range of 
processes (                                                         ).
• For consistent treatment of these, must incorporate QED in initial 
state: QED corrections to DGLAP evolution and a photon PDF.

↵2
S(MZ) ⇠ 0.1182 ⇠ 1

70
↵QED(MZ) ⇠

1

130

! NLO EW and NNLO QCD corrections can be comparable in size.

W , Z, WH, ZH, WW , tt, jets...
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Recent Studies
• Resurgence of interest in photon-initiated contribution to Drell-Yan 
(1606.00523, 1606.06646, 1607.01831),          (1607.01831) and      
(1606.01915) at LHC and FCC.
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Fig. 16: Same as Fig. 14 for the production of W+W� pairs at a 100 TeV hadron collider. In the left
plot we have not imposed any acceptance cut, while in the right plot the rapidity of the electroweak gauge
bosons is required to satisfy |⌘W ± |  4.

at 100 TeV can be found in Sect. 8 of this report. In the calculation, we keep the W boson stable so
that we can estimate the effects due only to the `+`� luminosity, as opposed to also the matrix-element
enhancements. In Fig. 16 we show the differential distributions for the invariant mass of the di-boson
pair mW+W � using the same format as for di-lepton production in Fig. 14. In the left plot we have
not imposed any acceptance cut, while in the right plot the rapidity of the electroweak gauge bosons is
required to satisfy |⌘W ± |  4.

First of all, we observe that also for W+W� production the contribution from the lepton PDFs
can be safely neglected, as was the case in di-lepton production. On the other hand, the photon-initiated
contribution dominates over the quark-antiquark annihilation for mW+W � � 7.5 TeV in the case of
realistic selection cuts. One should however take into account that this �� contribution is affected by
very substantial PDF uncertainties for all the relevant range of mW+W � values.

As in the case of di-lepton production, the increase of the relative importance of the �� channel
for large mW+W � is consistent with the behaviour of the ��� and �qq̄ luminosities shown in Fig. 13.
Again, no suppression from s-channel diagrams is present in �� ! W+W� production, leading to a
further relative enhancement with respect to the qq̄ channel at high mW+W � . On the other hand, in the
��-channel the W bosons are produced more peripherally than in the qq̄-channel. Therefore, the cut
in pseudorapidity reduces the relative impact of the �� channel, but it does not modify the qualitative
conclusions.

In Fig. 17 we show a similar comparison as that in Fig. 16, but now plotting the total integrated
cross-section above a minimum value of the invariant mass of the W+W� pair mmin, rather than the
cross-section per bin. The rapidity of the W bosons is restricted to lie in the |⌘W ± |  2.5 (4.0) region
in the left (right) plot. Therefore, the rates for di-boson production will be substantial even for invariant
masses as large as mmin ' 20 TeV, specially if also hadronic decay channels can be reconstructed.

To summarize, in this contribution we have explored the impact of photon- and lepton-initiated

26

6 D. Pagani et al.: The impact of the photon PDF and electroweak corrections on tt̄ distributions

d
σ

/d
p

T
 [
p
b
/b

in
]

LO QCD

QCD

QCD+EW

10−5

10−4

10−3

10−2

10−1

100

101

102

103 tt- (µ=HT/2), LHC13, no γ

M
a
d
G
r
a
p
h
5
_
a
M
C
@
N
L
O

LO EW/LO QCD NLO QCD/LO QCD NLO EW/LO QCD

 0

 0.5

 0.5
 1

 1.5
 2 (QCD+EW)/LO QCD; scale unc.

 0.5
 1

 1.5
 2 (QCD+EW)/LO QCD; PDF unc.

pT(t) [GeV]

−0.15
 0

 0.15

 0  500  1000  1500  2000

EW/LO QCD; PDF unc.

d
σ

/d
p

T
 [
p
b
/b

in
]

LO QCD

QCD

QCD+EW

10−5

10−4

10−3

10−2

10−1

100

101

102

103 tt- (µ=HT/2), LHC13

M
a
d
G
r
a
p
h
5
_
a
M
C
@
N
L
O

LO EW/LO QCD NLO QCD/LO QCD NLO EW/LO QCD

 0

 0.5

 0.5
 1

 1.5
 2 (QCD+EW)/LO QCD; scale unc.

 0.5
 1

 1.5
 2 (QCD+EW)/LO QCD; PDF unc.

pT(t) [GeV]

CT14 0.00 CT14 0.14 µ=mt

−0.15
 0

 0.15

 0  500  1000  1500  2000

EW/LO QCD; PDF unc.

Fig. 4. Differential distributions for the pT (t) at 13 TeV. The format of the plots is described in detail in the text.
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Fig. 5. Differential distributions for the m(tt̄) at 13 TeV. The format of the plots is described in detail in the text.

4 Predictions at 13 and 100 TeV

In this section we discuss the impact of the EW corrections
and the photon PDF on several distributions at 13 and 100 TeV.
In particular, we focus on the top-pair invariant mass m(tt̄), the
transverse momentum of the top quark pT (t), and the rapidities
of the top quark y(t) and tt̄ pair y(tt̄). Predictions for the LHC at
13 TeV are shown in figs. 4-9, while those for a Future Circular
Collider (FCC) at 100 TeV are shown in figs. 10-15. Unless

differently specified, results are obtained with no cut imposed
on the final-state particles.

In each figure we show two plots for the same observable,
displaying in the left plot, denoted as “no g”, predictions with
the photon PDF artificially set equal to zero. The reason be-
hind this choice is manyfold. First of all, the comparison of left
and right plots allows to gauge the impact of the photon PDF on
both the central value and PDF uncertainties of the electroweak
contributions. Furthermore, in the plots on the left it is possible
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Fig. 4. Differential distributions for the pT (t) at 13 TeV. The format of the plots is described in detail in the text.
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Fig. 5. Differential distributions for the m(tt̄) at 13 TeV. The format of the plots is described in detail in the text.
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In this section we discuss the impact of the EW corrections
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arXiv:1606.01915

arXiv:1607.01831

• Contribution from photon initial state potentially quite large, within 
quoted uncertainties. Is this the case?



The photon PDF

• As with other partons, the photon obeys a DGLAP evolution equation:
strong coupling ↵

S

have recently been calculated in [29], and are included here2. Thus, we
have

�(x, µ2) = �(x,Q2
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) splitting functions. At LO we have
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where the indices q and l denote the light quark and the lepton flavours respectively, see [29]
for the full NLO results. We find that including the NLO form of the DGLAP evolution
reduces the predicted cross section for M

R

= 750 GeV by about 5% compared to LO, with
the suppression being slightly larger at the highest rapidities.

What are the uncertainties on the above expressions? The main source is in fact due
to varying the factorization scale in the photon PDF, indicating the potential importance
of higher–order contributions. Varying µ

R

(in ↵ and ↵
s

) and µ
F

independently between
(M

R

/2, 2M
R

) for M
R

= 750 GeV, we find that there is a ⇠ ±10% variation in the predicted
�� luminosity, and hence in the predicted inclusive cross section. This is dominantly due to
the factorization scale variation, while if we set µ

R

= µ
F

some compensation in fact occurs,
so that the variation is instead ⇠ 5%. There is also some error associated with the PDF
uncertainty of the quark and gluon PDFs which enter the photon DGLAP evolution. Here,
we take MMHTNLO [30] PDFs3: calculating the PDF uncertainty in the usual way we find
less than a ⇠ ±2% variation.

In addition there is some uncertainty due to the quark treatment in the ‘incoherent’
emission term in the input PDF �(x,Q2

0

), and the related question of the choice of starting
scale Q

0

, which acts as an upper limit on the scale for photon emission in both the coherent
and incoherent input components; here we take Q

0

= 1 GeV. We choose to freeze the quark

2Strictly speaking, to be consistent we should also include the �� ! R matrix element at NLO, however if
the experimental value of the R ! �� width is taken this implicitly includes higher order–QCD corrections,
while for the simplest case that R does not couple to coloured particles these corrections are zero.

3Strictly speaking, a set which includes the photon PDF in the fit should be used, however an up–to–
date fit within the framework described in this paper is not currently available, and moreover this will only
influence the PDFs at higher order in ↵, so will be a small e↵ect.

5

• Thus PDF at scale     given in terms of:
‣ PDF at starting scale                        .
‣ Evolution term, due to emission from quarks up to scale    .

• Question: how do we determine the starting distribution                 ?

µ

Q0 ⇠ 1GeV

µ

�(x,Q2
0)

P�q
P�g P��

5

NLO in QCD
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Previous approaches
• NNPDF2.3QED: treat photon as we would quark and gluons. Freely 
parametrise               and fit to DIS and some LHC          data. Uncertainties 
(so far) remain large.

�(x,Q0) W,Z

arXiv:1308.0598

• MRST2004QED: first set to include QED contributions. Model 
assumed, with               generated by one-photon emission off valence 
quarks at LL. Results compared to ZEUS isolated photon DIS.

hep-ph/0411040

�(x,Q2
0)

• CT14QED: ‘Radiative ansatz’, similar to MRST2004QED model, but 
with additional freedom. Fit to ZEUS isolated photon DIS.
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FIG. 10: Comparison of various NLO photon PDFs at the scale Q = 3.2 GeV: CT14QED with

pγ0 = 0% (green), CT14QED with pγ0 = 0.14% (black), MRST2004QED0 using current quark

masses (orange), MRST2004QED1 using constituent quark masses (brown), and NNPDF2.3QED

with αs = 0.118 and average photon (blue).

at small values of x. This difference is most likely due to the different approaches to the

evolution of the PDFs taken by the different groups. Whereas in the MRST and CTEQ-

TEA approaches, the QCD and QED scales are chosen identical and evolved together, in

the NNPDF approach the QCD and QED scales are separate and the two scales are evolved

successively. This difference in the evolution at small x is consistent with the behavior seen

in the right panel of Fig. 2 in Ref. [6], where the NNPDF photon PDF also is smaller at

small x and large Q2 than when it is evolved using the code partonevolution [7, 17].

Another observation from Fig. 11, concerning the CT14QED and MRST2004QED pho-

ton PDFs is that the impact of the initial photon distribution becomes less significant as

Q2 increases and more photons are produce through radiation off the quarks. From these

plots we see that the fractional deviation between the different photon PDFs decreases with

increasing Q2. In fact at very small x and large Q2 the differences in the sea quark distribu-

tions of the PDFs presumably have more impact on the photon PDF than does the initial

photon distribution.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented CT14QED, which is the first set of CT14 parton distri-

bution functions obtained by including QED evolution at leading order (LO) with next-to-

leading order (NLO) QCD evolution in the global analysis by the CTEQ-TEA group. This

development will provide better theory predictions to compare with the precision data, such

as Drell-Yan pair production, measured at the LHC. The CT14QED PDFs are based on the

CT14 NLO initial distributions with the addition of an initial photon PDF. (There is also

an inconsequential rescaling of the quark sea PDFs, in order to maintain the momentum
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• Comparing these different sets 
reveals apparently large uncertainties.

However: have we included all 
of the available information?
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PDFs and QED: other work

• QED is long range force: at low scales (    low photon virtuality/large 
wavelength) the photon sees the entire EM charge of the proton, and 
‘coherent’ process, with proton intact after emission, is dominant. Must 
include this contribution!

⇠

8

• We have recently applied this approach to photon-initiated processes at 
high mass, semi-exclusive processes, and diphoton resonance production.

A.D. Martin, M.G. Ryskin, arXiv:1406.2118
M. Gluck, C. Pisano, E. Reya, hep-ph/0206126

LHL, V.A. Khoze, M.G. Ryskin, arXiv:1601.03372, 1601.07187, 1607.4635
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The photon PDF in events with rapidity gaps

L. A. Harland-Langa, V. A. Khozeb,c and M. G. Ryskinc

a Department of Physics and Astronomy, University College London, WC1E 6BT, UK
b Institute for Particle Physics Phenomenology, Durham University, DH1 3LE, UK

c Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, St. Petersburg,
188300, Russia

Abstract

We consider photon–initiated events with large rapidity gaps in proton–proton colli-
sions, where one or both protons may break up. We formulate a modified photon PDF
that accounts for the specific experimental rapidity gap veto, and demonstrate how
the soft survival probability for these gaps may be implemented consistently. Finally,
we present some phenomenological results for the two–photon induced production of
lepton and W boson pairs.

1 Introduction

Photon–initiated processes at the LHC allow us to study �p and two–photon interactions
at unprecedented collision energies, for a range of final states. In inclusive processes taking
account of electroweak corrections is of increasing importance for precision phenomenology,
and an essential ingredient in these is the introduction of a photon parton distribution func-
tion (PDF), where data such as the electroproduction of an isolated photon ep ! e�X at
HERA, and electroweak boson production at the LHC are sensitive to the size of the photon
distribution (see [1, 2, 3] for studies by the global parton fitting groups).

In addition to the inclusive case, it also natural to consider photon–initiated exclusive
and di↵ractive processes. The colour–singlet photon exchange can lead naturally to rapidity
gaps in the final state, and in addition these modes o↵er some important and potentially
unique advantages. For example, di↵ractive vector meson production provides a probe of the
gluon PDF at low x and Q2, as well as possible gluon saturation e↵ects, �� ! W+W� pair
production provides a precise probe of potential anomalous gauge couplings [4, 5, 6], while
the theoretically well understood case of lepton pair production, �� ! l+l�, is sensitive to
the e↵ect of soft proton interactions [7, 8] as well as potentially being useful for luminosity
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Photon–initiated processes at high mass

L. A. Harland-Langa, V. A. Khozeb,c and M. G. Ryskinc

a Department of Physics and Astronomy, University College London, WC1E 6BT, UK
b Institute for Particle Physics Phenomenology, Durham University, DH1 3LE, UK

c Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, St. Petersburg,
188300, Russia

Abstract

We consider the influence of photon–initiated processes on high–mass particle produc-
tion. We discuss in detail the photon PDF at relatively high parton x, relevant to
such processes, and evaluate its uncertainties. In particular we show that, as the domi-
nant contribution to the input photon distribution is due to coherent photon emission,
at phenomenologically relevant scales the photon PDF is already well determined in
this region, with the corresponding uncertainties under good control. We then demon-
strate the implications of this result for the example processes of high–mass lepton
and W boson pair production at the LHC and FCC. While for the former process the
photon–initiated contribution is expected to be small, in the latter case we find that it
is potentially significant, in particular at larger masses.

1 Introduction

As we enter the era of precision LHC phenomenology, where NNLO QCD calculations are
becoming the standard for many processes, the influence of electroweak corrections is increas-
ingly relevant. A complete treatment of these inevitably requires the inclusion of diagrams
with initial–state photons, with corresponding photon parton distribution function (PDF)
introduced in analogy to the more commonly considered PDFs of the quarks and gluons [1–5].
As discussed recently in [6–9] the photon–initiated contribution may be significant for the
production of lepton, W boson and top quark pairs at higher invariant masses, and hence
higher parton x. Such processes are of much phenomenological interest, being particularly
sensitive to electroweak corrections and the PDFs, as well BSM physics; high mass lepton
pair production, for example, is an irreducible background to the Drell–Yan production of a
new Z

0 boson.
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Figure 2: The photon PDF x�(x, µ2) subject to the rapidity gap constraint (12), for di↵erent
values of � and for µ2 = 200, 104 GeV2, with the usual inclusive PDF shown for comparison.

We now consider some numerical results. As described above, for the input photon PDF,
following [25] we include a coherent component due to purely elastic photon emission and an
incoherent component due to emission from the individual quark lines, such that
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in the dipole approximation, where G
E

and G
M

are the ‘Sachs’ form factors. The incoherent
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‣ Coherent: due to elastic               emission        extremely well 
understood.
‣ Incoherent: emission from individual quarks. Some theoretical 
guidance, but known less precisely.

p ! p� )

p

�
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incoh

Q0 ⇠ 1GeV• Photon at                      given as sum of ‘coherent’ and ‘incoherent’ terms:



Coherent photon emission
• The part of               due to coherent photon emission is given by

Figure 2: The photon PDF x�(x, µ2) subject to the rapidity gap constraint (12), for di↵erent
values of � and for µ2 = 200, 104 GeV2, with the usual inclusive PDF shown for comparison.
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where              are the proton electric/magnetic form factors. Precisely 
measured from elastic      scattering, in terms of `dipole’ form factors: 

The exclusive channel is particularly relevant in light of the forward proton detectors
approved for installation at ATLAS (AFP [16]) and already installed at CMS (CT-PPS [18]):
such exclusive events can be selected by tagging the outgoing intact protons in association
with a measurement of the resonance R in the central detector. The background from over-
lapping non–exclusive pile–up interactions may be controlled by ensuring that the ‘missing
mass’ and rapidity information reconstructed from the outgoing protons is consistent with
the measurement in the central detector, as well as through the use of ‘fast timing’ detectors
to check if the photon and proton scattering points are the same, see [19, 43].

By selecting exclusive events we naturally enhance the relative contribution from the
��–initiated subprocess, see [20]. In particular, for the gg–initiated case, which can occur
exclusively through the ‘Durham’ mechanism described in [44], there is a strong Sudakov
suppression (given by (18) without the theta–function and with a much lower kc

? = Q
0

=
O(GeV)) associated with the requirement of no additional parton emission from the hard
process. As a result, the exclusive gg luminosity in the relevant kinematic regions is ⇠ 3
orders of magnitude smaller than in the inclusive case. In addition, for the final state to be
exclusive there must be no underlying event activity associated with the hard process. The
probability for this to occur is known as the ‘survival factor’: see Appendix A for further
discussion. For gg–induced production this suppresses the cross section by a further ⇠ 2
orders of magnitude, so that the exclusive cross section is suppressed in total by a very large
factor of ⇠ 105.

In the ��–initiated process there is also some suppression from the fact that, while the
dominant component of the input PDF, �(x,Q

0

), is due to coherent emission from the proton,
any further DGLAP evolution cannot occur, as this will produce secondary particles and spoil
the exclusivity of the final state. More precisely, we calculate the exclusive �� luminosity in
the usual equivalent photon approximation (EPA) [45]. The quasi–real photons are emitted
by the incoming proton i = 1, 2 with a number density given by
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where x
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and q
i? are the longitudinal momentum fraction and transverse momentum of the

photon i, respectively, and Q2
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is the modulus of the photon virtuality. The functions F
E

and
F
M

are the usual proton electric and magnetic form factors
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in the dipole approximation, where G
E

and G
M

are the ‘Sachs’ form factors. The ‘EPA’ ��
luminosity is given by
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• Most precise measurements show 
deviations from dipole, but           level 
effects (apart from at highest    ). Extended 
parameterisations (‘double-dipole’ etc) 
available- should include in future fits.
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FIG. 10. (Color) The form factors GE and GM , normal-
ized to the standard dipole, and GE/GM as a function of Q2.
Black line: Best fit to the new Mainz data, blue area: statis-
tical 68% pointwise confidence band, light blue area: exper-
imental systematic error, green outer band: variation of the
Coulomb correction by ±50%. The di↵erent data points de-
pict the previous measurements [2, 4, 43–45, 47, 48, 50, 53, 55–
57, 60, 67, 68, 87–91] as in Refs. [2, 4] with the data points of
Refs. [16, 64, 92] added.

Fit model Input parametrization

Std. dip. Arr.03P Arr.03R Arr.07 F.-W.

Single dipole 1.000 2.193 2.227 2.230 3.216

Double dipole 1.002 1.033 1.001 1.003 1.162

Polynomial 1.000 1.000 1.000 1.000 1.000

Poly. + dipole 1.000 1.000 1.000 1.000 1.000

Poly. ⇥ dipole 1.000 1.000 1.000 1.000 1.000

Inv. poly. 1.000 1.000 1.000 1.000 1.000

Spline 1.000 1.000 1.002 1.002 1.000

Spline ⇥ dipole 1.000 1.000 1.000 1.000 1.000

Friedrich-Walcher 1.005 1.004 1.004 1.004 1.002

TABLE VI. The average achieved �2

red

of the di↵erent model
combinations. Columns: Input parametrizations. Rows:
Models used in the fit.

Fit model Input parametrization

Std. dip. Arr.03P Arr.03R Arr.07 F.-W.

811 829 868 878 860

Single Dipole 0±0.7 29±1 �6±1 �15±1 �2±1

Double Dipole 0±1 10±1 0±2 3±3 81±27

Polynomial 0±7 0±7 0±6 0±6 0±6

Poly. + dipole 0±7 �1±7 0±6 �1±6 0±6

Poly. ⇥ dipole 0±5 0±5 0±4 0±4 0±5

Inv. poly. �1±5 �1±5 0±5 �1±5 0±5

Spline �1±3 �1±3 �3±3 �5±3 0±3

Spline ⇥ dipole 0±3 1±3 �1±3 �2±3 1±3

Friedrich-Walcher 0±1 3±2 �1±2 +2±3 �1±3

TABLE VII. Bias of the di↵erent models for the charge radius
extraction and the width of the radius distribution. Positive
values correspond to an extracted radius larger than the input
radius. Values are in atm.

cept the standard dipole itself. The double-dipole model
reproduces the general shape for most models surpris-
ingly well; however, one cannot extract the radii reliably
as can be seen in the Tables VII and VIII listing the bias
of the radius extraction. All flexible models exhibit only
a small bias here except for the spline for a single input
parametrization. These tables also list the 1� width of
the distributions, i.e., these values are not the error of the
bias, but describe what kind of precision one can expect
from the model for a single experiment. In that sense,
the spline models are more e�cient than the polynomial
models.

Second, we compare the form factors determined with
our broad set of models. Figures 11 show the relative
deviation of the di↵erent models from the spline fit. The
flexible models have a very small spread between them-
selves, at least in the region where a reliable disentan-
glement of the form factors is possible. The less flexible
fits exhibit larger deviations, especially above 0.5 GeV2.

24

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03

0 0.05 0.1 0.15 0.2

G
E
/G

s
t
d
.d

i
p
o
l
e

(a)

0.8

0.85

0.9

0.95

1

1.05

0 0.2 0.4 0.6 0.8 1

G
E
/G

s
t
d
.d

i
p
o
l
e

(b)

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 0.2 0.4 0.6 0.8 1

G
M
/(
µ
p
G

s
t
d
.d

i
p
o
l
e

)

Q2[GeV2]

(c)

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

µ
p
G

E
/G

M

Q2[GeV2]

(d)

[4] no TPE

[2]
Christy [56]
Simon [60]

Price [67]
Berger [87]
Hanson [88]
Janssens [57]

Borkowski [64]
Bartel [89]
Murphy [92]
Bosted [68]

[4] no TPE

[4] with TPE

[2]
Gayou [44, 45]

Milbrath [50]
Punjabi [53]
Jones [47, 48]
Ron [16]

Zhan [55]
Crawford [43]
Pospischil [90]
Dieterich [91]

FIG. 10. (Color) The form factors GE and GM , normal-
ized to the standard dipole, and GE/GM as a function of Q2.
Black line: Best fit to the new Mainz data, blue area: statis-
tical 68% pointwise confidence band, light blue area: exper-
imental systematic error, green outer band: variation of the
Coulomb correction by ±50%. The di↵erent data points de-
pict the previous measurements [2, 4, 43–45, 47, 48, 50, 53, 55–
57, 60, 67, 68, 87–91] as in Refs. [2, 4] with the data points of
Refs. [16, 64, 92] added.

Fit model Input parametrization

Std. dip. Arr.03P Arr.03R Arr.07 F.-W.

Single dipole 1.000 2.193 2.227 2.230 3.216

Double dipole 1.002 1.033 1.001 1.003 1.162

Polynomial 1.000 1.000 1.000 1.000 1.000

Poly. + dipole 1.000 1.000 1.000 1.000 1.000
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TABLE VI. The average achieved �2
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of the di↵erent model
combinations. Columns: Input parametrizations. Rows:
Models used in the fit.

Fit model Input parametrization

Std. dip. Arr.03P Arr.03R Arr.07 F.-W.
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Single Dipole 0±0.7 29±1 �6±1 �15±1 �2±1

Double Dipole 0±1 10±1 0±2 3±3 81±27

Polynomial 0±7 0±7 0±6 0±6 0±6

Poly. + dipole 0±7 �1±7 0±6 �1±6 0±6

Poly. ⇥ dipole 0±5 0±5 0±4 0±4 0±5

Inv. poly. �1±5 �1±5 0±5 �1±5 0±5
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TABLE VII. Bias of the di↵erent models for the charge radius
extraction and the width of the radius distribution. Positive
values correspond to an extracted radius larger than the input
radius. Values are in atm.

cept the standard dipole itself. The double-dipole model
reproduces the general shape for most models surpris-
ingly well; however, one cannot extract the radii reliably
as can be seen in the Tables VII and VIII listing the bias
of the radius extraction. All flexible models exhibit only
a small bias here except for the spline for a single input
parametrization. These tables also list the 1� width of
the distributions, i.e., these values are not the error of the
bias, but describe what kind of precision one can expect
from the model for a single experiment. In that sense,
the spline models are more e�cient than the polynomial
models.

Second, we compare the form factors determined with
our broad set of models. Figures 11 show the relative
deviation of the di↵erent models from the spline fit. The
flexible models have a very small spread between them-
selves, at least in the region where a reliable disentan-
glement of the form factors is possible. The less flexible
fits exhibit larger deviations, especially above 0.5 GeV2.
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Incoherent photon emission

• In addition, there will be some contribution to              due to        
emission from the individual quarks, as in CT/MRST.

input term is given by6
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accounts for the fact that the lowest proton excitation is the �–isobar, and the final factor
(1�G2

E

(Q2)) corresponds to the probability to have no intact proton in the final state (which
is already included in the coherent component). Here m

q

= m
d

(m
u

) when convoluted with
d
0

(u
0

), and the current quark masses are taken. As the quark distributions are frozen for
Q < Q

0

, this represents an upper bound on the incoherent contribution. Although other
models for this incoherent component may also be taken, the conclusions which follow are
relatively insensitive to the specific choice, and so for simplicity we will not consider them
here. We also note that it is possible to account explicitly for the first �–isobar excitation
in the coherent component, see [25], however this does not have a noticeable e↵ect on the
results which follow, and is omitted here.

In Fig. 2 we show the e↵ect of including the rapidity gap constraint (12) on the photon
PDF, for two choice of scale and for di↵erent values of �. Here, and in all numerical results
which follow, we for concreteness use MMHT2014 NLO PDFs [26] for the quark term in
(13)7. The suppression in the PDFs relative to the inclusive case, which becomes stronger
as � decreases, is clear. In addition, we can see that the suppression is stronger at lower
x and higher µ2, as expected from (12): in the former case, the outgoing quark in the
q ! q� splitting has on average lower longitudinal momentum, while in the latter the quark
transverse momentum is higher, such that in both cases the quark tends to be produced more
centrally.

We end this section with some comments. First, we note that qualitatively speaking the
inclusion of the ⇥ function in the integral (13) plays the role of the Sudakov factor in gluon–
mediated central exclusive production (CEP) processes, see e.g. [27], that is, it accounts for
the probability for no secondary partons emission. In the case of pure CEP processes, such
emission is entirely forbidden, whereas here we only require that no secondaries are emitted
into the veto region. Second, in accounting for the veto condition (12) in the case of the
NLO splitting functions we should consider vetoes on the two emitted partons individually,
i.e. qg(qq) for P

�q

(P
�g

). However since the e↵ect of the NLO correction is rather small
(⇠ 5% ) here we for simplicity use the same veto as in the LO case. This corresponds to
a veto on the kinematics of the parton pair and so only gives an approximate indication
of the e↵ect to the NLO contribution. In addition, we emphasise that (13) corresponds to

6In fact, we take the slightly di↵erent form described in footnote 3 of [25], with as in (20) the replacement
F
1

(Q2) ! GE(Q2) made to give a more precise evaluation for the probability of coherent emission.
7While for consistency a PDF set which includes the photon contribution to the quark evolution should

strictly be taken, this is a small e↵ect, entering at higher order in ↵.
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Input photon PDF

• Photon PDF at      given as sum of coherent and incoherent terms:

Figure 2: The photon PDF x�(x, µ2) subject to the rapidity gap constraint (12), for di↵erent
values of � and for µ2 = 200, 104 GeV2, with the usual inclusive PDF shown for comparison.

We now consider some numerical results. As described above, for the input photon PDF,
following [25] we include a coherent component due to purely elastic photon emission and an
incoherent component due to emission from the individual quark lines, such that
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0
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) , (15)

with
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◆
, (16)

where q
t

is the transverse momentum of the emitted photon, and Q2 is the modulus of the
photon virtuality, given by

Q2 =
q2
t

+ x2m2

p

1� x
, (17)

The functions F
E

and F
M

are the usual proton electric and magnetic form factors

F
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M

(Q2) F
E
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4m2
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, (18)

with

G2

E

(Q2) =
G2

M

(Q2)

7.78
=

1
�
1 +Q2/0.71GeV2

�
4

, (19)

in the dipole approximation, where G
E

and G
M

are the ‘Sachs’ form factors. The incoherent

6

p� =

Z
dxx�(x,Q2
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• Recall our incoherent term is upper limit       at least             of 
photon PDF is known very precisely. Entirely expected: at low       
the dominant mechanism for    emission from a proton is coherent.

Q0

Q0

)

12

�

Q2

• Find:

• Consider momentum fraction of proton at       due to two 
contributions:

⇠ 75%

to ep scattering for low photon Q

2 is dominantly coherent, we expect (6) to give the dominant
contribution to the input photon PDF. Thus the input photon distribution is in fact already
well determined.

More precisely, in general there will also be some contribution from incoherent emission
(�p ! �X), where the proton dissociates after the scattering process. That is, we have

�(x,Q2

0

) = �

coh

(x,Q2

0

) + �

incoh

(x,Q2

0

) , (10)

where the second term corresponds to this incoherent input; it is this combined input PDF,
including both coherent and incoherent components, which corresponds to the freely param-
eterised NNPDF distribution described above. In general, as recently discussed in [21] this
incoherent contribution may be constrained from experimental data on F

2

and F

L

, however
for our considerations it is su�cient to use a simplified model which gives an upper bound
on such a contribution. Thus, following [1, 4] we model this emission process as being due
to one photon emission from the valence quarks in the leading–logarithmic approximation;
such an approach is also taken in [2, 5] to model the photon PDFs, although in these cases
no coherent component is included. We take4

�

incoh

(x,Q2

0

) =
↵

2⇡

Z
1

x

dz

z


4

9
u

0

⇣
x

z

⌘
+

1

9
d

0

⇣
x

z

⌘� 1 + (1� z)2

z

Z
Q

2
0

Q

2
min

dQ2

Q

2 +m

2

q

�
1�G

2

E

(Q2)
�
,

(11)
where
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2

min

=
x
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�
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2

�

� (1� x)m2

p

�
, (12)

accounts for the fact that the lowest proton excitation is the �–isobar, and the final factor
(1�G

2

E

(Q2)) corresponds to the probability to have no intact proton in the final state (which
is already included in the coherent component). Here m

q

= m

d

(m
u

) when convoluted with
d

0

(u
0

), and the current quark masses are taken. Crucially, as the quark distributions are
frozen for Q < Q

0

, this represents an upper bound on the incoherent contribution. If we
consider the momentum fraction

p

�

=

Z
dx x�(x,Q2

0

) , (13)

carried by the photon at the starting scale Q

2

0

= 2GeV2, then even for this upper bound we
find

p

coh

�

= 0.15% p

incoh.

�

= 0.05% , (14)

that is we expect p

incoh.

�

⌧ p

coh.

�

, consistent with the general expectation that the emission
process for low Q

2 photons should be dominantly coherent. As the coherent input is quite

most relevant to our study, however this description is not perfect, and a completely precise calculation would
go beyond this and in addition should consider the uncertainties associated with the available form factor
data. For the purposes of this paper, however, such a high level of precision is not necessary.

4In fact, we take the slightly di↵erent form described in footnote 3 of [4], with as in (11) the replacement
F1(Q2) ! GE(Q2) made to give a more precise evaluation for the probability of coherent emission.
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Solving the DGLAP equation
• Returning to photon DGLAP evolution equation:

strong coupling ↵
S

have recently been calculated in [29], and are included here2. Thus, we
have

�(x, µ2) = �(x,Q2

0

) +

Z
µ
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2
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↵(Q2)
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dz
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P
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x

z
,Q2)

+
X

q

e2
q

P
�q

(z)q(
x

z
,Q2) + P

�g

(z)g(
x

z
,Q2)

◆
, (6)

where the input distribution �(x,Q
0

) = �coh(x,Q
0

)+ �incoh(x,Q
0

) and P
�q

(z) and P
�g

(z) are
the NLO (in ↵

S

) splitting functions. At LO we have

P
�g

(z) = 0 , (7)

P
�q

(z) =


1 + (1� z)2

z

�
, (8)

P
��

(z) = �2

3

"
N

c

X

q

e2
q

+
X

l

e2
l

#
�(1� z) , (9)

where the indices q and l denote the light quark and the lepton flavours respectively, see [29]
for the full NLO results. We find that including the NLO form of the DGLAP evolution
reduces the predicted cross section for M

R

= 750 GeV by about 5% compared to LO, with
the suppression being slightly larger at the highest rapidities.

What are the uncertainties on the above expressions? The main source is in fact due
to varying the factorization scale in the photon PDF, indicating the potential importance
of higher–order contributions. Varying µ

R

(in ↵ and ↵
s

) and µ
F

independently between
(M

R

/2, 2M
R

) for M
R

= 750 GeV, we find that there is a ⇠ ±10% variation in the predicted
�� luminosity, and hence in the predicted inclusive cross section. This is dominantly due to
the factorization scale variation, while if we set µ

R

= µ
F

some compensation in fact occurs,
so that the variation is instead ⇠ 5%. There is also some error associated with the PDF
uncertainty of the quark and gluon PDFs which enter the photon DGLAP evolution. Here,
we take MMHTNLO [30] PDFs3: calculating the PDF uncertainty in the usual way we find
less than a ⇠ ±2% variation.

In addition there is some uncertainty due to the quark treatment in the ‘incoherent’
emission term in the input PDF �(x,Q2

0

), and the related question of the choice of starting
scale Q

0

, which acts as an upper limit on the scale for photon emission in both the coherent
and incoherent input components; here we take Q

0

= 1 GeV. We choose to freeze the quark

2Strictly speaking, to be consistent we should also include the �� ! R matrix element at NLO, however if
the experimental value of the R ! �� width is taken this implicitly includes higher order–QCD corrections,
while for the simplest case that R does not couple to coloured particles these corrections are zero.

3Strictly speaking, a set which includes the photon PDF in the fit should be used, however an up–to–
date fit within the framework described in this paper is not currently available, and moreover this will only
influence the PDFs at higher order in ↵, so will be a small e↵ect.
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Solving the DGLAP equation
• We find:of the photon PDF can be solved exactly, giving

�(x, µ2) = �(x,Q2

0
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(Q2, µ2) , (5)

⌘ �in(x, µ2) + �evol(x, µ2) , (6)

where the photon Sudakov factor

S
�

(Q2

0

, µ2) = exp
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dz
X
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!
, (7)

corresponds to the probability for the photon PDF to evolve from scales Q
0

to µ without
further branching; here P

q(l)�

(z) is the � to quark (lepton) splitting function at NLO in ↵
s

.
At LO it is given by

P
a�

(z) = N
a

⇥
z + (1� z)2

⇤
, (8)

whereN
a

= N
c

e2
q

for quarks andN
a

= e2
l

for leptons, while the factor of 1/2 in (7) is present to
avoid double counting over the quark/anti–quarks (lepton/anti–leptons). The Sudakov factor
is generated by resumming the term proportional to P

��

, due to virtual corrections to the
photon propagator, which is a relatively small correction to the photon evolution. However
this correction is not negligible, in particular for larger masses; we have S

�

⇠ 0.97� 0.93 for
M

X

= 20� 500 GeV.
As described above, the solution (5) is only exact if we neglect the dependence of the

quark and gluon PDFs on the photon PDF, through the P
q�

and P
g�

terms in their evolution,
respectively. These correspond to O(↵2) corrections to the photon evolution, and are therefore
formally higher–order in ↵, so that they can be safely neglected. To confirm this expectation,
we have compared (5) with the result of solving (1) numerically with the P

q�

term included in
the quark evolution, at LO in ↵

S

and only considering QED evolution (i.e. using the QECDS

scheme [27] described below) for concreteness; the contribution from P
g�

only enters at NLO
in ↵

S

and so will be further suppressed. As expected, the di↵erence is very small, and the
results are found to coincide to within less than 0.1%. We have also confirmed this by using
the APFEL evolution code [27], with the results with and without the P

q�

term in the quark
evolution coinciding to a very similar level, irrespective of the evolution scheme used.

The above equations correspond to the fully inclusive distribution, that is without any
gap survival conditions. To include these, we note that as shown in (6) the photon PDF
at a scale µ may be expressed as a sum of a term, �in(x, µ2), due to the input PDF, i.e.
generated by coherent and incoherent photon emission up to the scale Q

0

, multiplied by the
probability of no further emission up to the hard scale µ, and a second term, �evol(x, µ2), due
purely to DGLAP emission from the quark/gluons, which is independent of the input photon
PDF. For the coherent input component, there is naturally a large rapidity gap between
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respectively. These correspond to O(↵2) corrections to the photon evolution, and are therefore
formally higher–order in ↵, so that they can be safely neglected. To confirm this expectation,
we have compared (5) with the result of solving (1) numerically with the P

q�

term included in
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and only considering QED evolution (i.e. using the QECDS
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and so will be further suppressed. As expected, the di↵erence is very small, and the
results are found to coincide to within less than 0.1%. We have also confirmed this by using
the APFEL evolution code [27], with the results with and without the P

q�

term in the quark
evolution coinciding to a very similar level, irrespective of the evolution scheme used.

The above equations correspond to the fully inclusive distribution, that is without any
gap survival conditions. To include these, we note that as shown in (6) the photon PDF
at a scale µ may be expressed as a sum of a term, �in(x, µ2), due to the input PDF, i.e.
generated by coherent and incoherent photon emission up to the scale Q
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, multiplied by the
probability of no further emission up to the hard scale µ, and a second term, �evol(x, µ2), due
purely to DGLAP emission from the quark/gluons, which is independent of the input photon
PDF. For the coherent input component, there is naturally a large rapidity gap between
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��
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photon propagator, which is a relatively small correction to the photon evolution. However
this correction is not negligible, in particular for larger masses; we have S
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As described above, the solution (5) is only exact if we neglect the dependence of the
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and P
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terms in their evolution,
respectively. These correspond to O(↵2) corrections to the photon evolution, and are therefore
formally higher–order in ↵, so that they can be safely neglected. To confirm this expectation,
we have compared (5) with the result of solving (1) numerically with the P
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term included in
the quark evolution, at LO in ↵
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and only considering QED evolution (i.e. using the QECDS
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and so will be further suppressed. As expected, the di↵erence is very small, and the
results are found to coincide to within less than 0.1%. We have also confirmed this by using
the APFEL evolution code [27], with the results with and without the P
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term in the quark
evolution coinciding to a very similar level, irrespective of the evolution scheme used.

The above equations correspond to the fully inclusive distribution, that is without any
gap survival conditions. To include these, we note that as shown in (6) the photon PDF
at a scale µ may be expressed as a sum of a term, �in(x, µ2), due to the input PDF, i.e.
generated by coherent and incoherent photon emission up to the scale Q
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, multiplied by the
probability of no further emission up to the hard scale µ, and a second term, �evol(x, µ2), due
purely to DGLAP emission from the quark/gluons, which is independent of the input photon
PDF. For the coherent input component, there is naturally a large rapidity gap between
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respectively. These correspond to O(↵2) corrections to the photon evolution, and are therefore
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we have compared (5) with the result of solving (1) numerically with the P

q�

term included in
the quark evolution, at LO in ↵

S

and only considering QED evolution (i.e. using the QECDS

scheme [27] described below) for concreteness; the contribution from P
g�

only enters at NLO
in ↵

S

and so will be further suppressed. As expected, the di↵erence is very small, and the
results are found to coincide to within less than 0.1%. We have also confirmed this by using
the APFEL evolution code [27], with the results with and without the P
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evolution coinciding to a very similar level, irrespective of the evolution scheme used.

The above equations correspond to the fully inclusive distribution, that is without any
gap survival conditions. To include these, we note that as shown in (6) the photon PDF
at a scale µ may be expressed as a sum of a term, �in(x, µ2), due to the input PDF, i.e.
generated by coherent and incoherent photon emission up to the scale Q
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, multiplied by the
probability of no further emission up to the hard scale µ, and a second term, �evol(x, µ2), due
purely to DGLAP emission from the quark/gluons, which is independent of the input photon
PDF. For the coherent input component, there is naturally a large rapidity gap between
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Figure 2: The photon PDF at scale µ

F

= 100 and 2000 GeV, with the breakdown between
coherent, incoherent and evolution components, defined as in (3) and (10) given. Also shown
is the NNPDF3.0 [10] result, with the corresponding 68% C.L. uncertainty bands. In the
lower plots the ratios of the di↵erent components to the total photon PDF are shown.

evolution component in (3) is dominant, and as a result the corresponding uncertainties are
under reasonable control5. As x increases, however, the phase space for the DGLAP q ! q�

emission process decreases, and the contribution from the coherent photon input becomes
more important. This e↵ect is evident in the NNPDF set, where the increasing contribu-
tion from the poorly determined input photon leads to a rapidly increasing uncertainty as x
increases.

In Fig. 3 we show the corresponding PDF luminosities, defined as
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where ⌧ = M

2

X

/s and f

i

is the corresponding PDF for parton i. As well as the �� case
discussed above, we also show for comparison the qq, qq (defined in both cases as a uniform
sum over the 5 corresponding quark flavours) and gg cases, using the same NNPDF set. For
our prediction, we now for illustration include an uncertainty band due to varying the inco-
herent component between x�(x,Q

0

) = 0 and the upper bound of (11), although in the plots
this is essentially invisible within the width of the central curves. Other uncertainties, due
for example to the quark (and at higher orders, gluon) PDFs entering the photon evolution
in (1), the use of the dipole approximation (9) for the elastic form factor and the choice of
Q

0

in (3) are not included here. These e↵ects are expected to be generally subleading in
comparison to that due to the incoherent input, and will be omitted in the results which

5The slight deviation between our results and the NNPDF sets, even accounting for the PDF uncertainties,
at lower x is due to the di↵ering ‘truncated’ solution to the DGLAP equation applied in the latter case.
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emission process decreases, and the contribution from the coherent photon input becomes
more important. This e↵ect is evident in the NNPDF set, where the increasing contribu-
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discussed above, we also show for comparison the qq, qq (defined in both cases as a uniform
sum over the 5 corresponding quark flavours) and gg cases, using the same NNPDF set. For
our prediction, we now for illustration include an uncertainty band due to varying the inco-
herent component between x�(x,Q

0

) = 0 and the upper bound of (11), although in the plots
this is essentially invisible within the width of the central curves. Other uncertainties, due
for example to the quark (and at higher orders, gluon) PDFs entering the photon evolution
in (1), the use of the dipole approximation (9) for the elastic form factor and the choice of
Q

0

in (3) are not included here. These e↵ects are expected to be generally subleading in
comparison to that due to the incoherent input, and will be omitted in the results which

5The slight deviation between our results and the NNPDF sets, even accounting for the PDF uncertainties,
at lower x is due to the di↵ering ‘truncated’ solution to the DGLAP equation applied in the latter case.
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PDF comparison
• Consider photon PDF at high scale    :

‣         : dominated by evolution. Uncertainty under good control.
‣         : input component more important.

• NNPDF has huge uncertainties at higher    .    
• But in our physical approach this is not the case. Prediction lies on 
lower end of NNPDF uncertainty band.
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Figure 3: The ��, gg, qq and qq PDF luminosities. The �� case is shown for the
NNPDF3.0 [10] set and following the approach of Section 2.2 , while all other luminosities
correspond to the NNPDF set. The corresponding 68% C.L. uncertainty bands are shown
in the NNPDF cases, while an uncertainty band due to varying the incoherent component
between x�(x,Q

0

) = 0 and the upper bound of (11) is shown, although barely visible, for
our prediction.

follow. Nonetheless, it is worth bearing in mind that the e↵ect of these will be to increase
the total uncertainty on the photon PDF somewhat, which should be accounted for in a
complete analysis; for the current purposes, however, this is not necessary.

The same increase in Fig. 3 in the NNPDF uncertainty band at high M

X

for the ��

case is clear. However, interestingly we can see that the trend in the central value of the
NNPDF �� luminosity is remarkably di↵erent compared to the other partons, with the former
decreasing much less rapidly at high M

X

, i.e. high x. On the other hand, our prediction
shows no such significant di↵erence, and roughy follows the same trend as in the quarks.
As discussed in [9] some steepening of the PDF luminosities for the QCD partons may be
expected due to the di↵ering behaviours of ↵

QED

and ↵

s

at higher scales. However this e↵ect,
which is indeed observable in particular upon comparison of our result for the �� and the
gg luminosity, is relatively small and cannot explain the di↵erence seen in the NNPDF case.
We are therefore led to conclude that this potentially significant di↵erence is an artefact of
the large uncertainties in the NNPDF photon PDF; the physically motivated photon PDF
of our approach, which lies towards the lower end of the NNPDF uncertainty band, displays
no significant di↵erence in behaviour at higher x compared to the quarks and gluons.

It is therefore in this higher x region that the importance of including all available infor-
mation about the photon PDF is clearest; by excluding the additional input which comes from
considering the physics of the dominantly coherent photon emission process at the starting
scale Q

0

, the corresponding PDF uncertainties are dramatically over–inflated. By including
this information, as in Section 2.2, the predicted photon PDF at higher x is determined quite
precisely to lie close to the lower edge of the NNPDF uncertainty band. It has for example
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our prediction.
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which is indeed observable in particular upon comparison of our result for the �� and the
gg luminosity, is relatively small and cannot explain the di↵erence seen in the NNPDF case.
We are therefore led to conclude that this potentially significant di↵erence is an artefact of
the large uncertainties in the NNPDF photon PDF; the physically motivated photon PDF
of our approach, which lies towards the lower end of the NNPDF uncertainty band, displays
no significant di↵erence in behaviour at higher x compared to the quarks and gluons.

It is therefore in this higher x region that the importance of including all available infor-
mation about the photon PDF is clearest; by excluding the additional input which comes from
considering the physics of the dominantly coherent photon emission process at the starting
scale Q
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, the corresponding PDF uncertainties are dramatically over–inflated. By including
this information, as in Section 2.2, the predicted photon PDF at higher x is determined quite
precisely to lie close to the lower edge of the NNPDF uncertainty band. It has for example
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• Consider parton-parton luminosities at LHC and FCC. 
• Previous result translates to large uncertainty and potentially large      
luminosity at high mass.        fall much more steeply than central 
NNPDF prediction.
• Our approach: scaling very similar to           , with      only slightly 
stepper. Uncertainties fairly small, again a lower end of NNPDF band.
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Drell-Yan production
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Figure 4: The di↵erential lepton pair production cross sections at
p
s = 13 TeV and 100 TeV

with respect to the invariant mass of the pair M

ll

, for lepton |⌘| < 2.5 and p? > 20 GeV.
The photon–initiated contributions predicted following the approach of Section 2.2 and the
NNPDF3.0QED [10] set, including the 68% C.L. uncertainty bands are shown, in addition
to the NLO Drell–Yan cross section, calculated with MCFM [23]. An uncertainty band due to
varying the incoherent component between x�(x,Q

0

) = 0 and the upper bound of (11) is
shown for our prediction.

Figure 5: The di↵erential W boson pair production cross sections at
p
s = 13 TeV and 100

TeV with respect to the invariant mass of the pair M

WW

, for W pseudorapidity |⌘| < 4.
The photon–initiated contributions predicted following the approach of Section 2.2 and the
NNPDF3.0QED [10], including the 68% C.L. uncertainty bands are shown, in addition to
the NLO QCD cross section, calculated with MCFM [23], and including the gluon–initiated
box contribution. An uncertainty band due to varying the incoherent component between
x�(x,Q

0

) = 0 and the upper bound of (11) is shown for our prediction.
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• Consider lepton pair production at LHC/FCC. As       increases find 
central NNPDF       prediction becomes sizeable/dominant. Discussed 
in detail in 1606.00523, 1606.06646, 1607.01831.
• Follows directly from previous slide: relatively gentle decrease of 
NNPDF      luminosity at higher mass.
• We find this is not expected. Photon-initiated contribution             .        
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• Similar story for              production: our results at lower end of 
NNPDF uncertainty band.

• However here the photon-initiated contribution is still quite large 
(caveat: depends somewhat on cuts).

W+W�
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Figure 13: The 68% confidence level interval of the NNPDF2.3qed NNLO photon PDF as a function of momentum
fraction x at the input scale Q2

0 = 2 GeV2 (left panel) and Q2 = 104 GeV2 (right panel) before (yellow solid
area) [22] and after (grey shaded area) inclusion of the double-di↵erential cross section measurement as a function
of invariant mass m`` and absolute dilepton rapidity |y`` |. Also shown is the MRST2004qed photon PDF in a current
quark (blue dashed line) and a constituent quark (blue dotted line) mass scheme [21], and the 68% CL band (green
shaded area) for the CT14qed photon PDF [89].

MMHT14 PDF. The reduction of uncertainties is rather large and confirms the strong sensitivity of this
data to the photon PDF. Using the double-di↵erential cross section as a function of m`` and |�⌘``| instead,
a slightly smaller impact is found. This can be explained by the fact that the contributions from the PI
process are largest in the regions of small |y``| and large |�⌘``|, where the uncertainties of the measurement
are smallest for |y``| but largest for |�⌘``|.
Inspection of the optimised experimental nuisance parameters of those minimisations with the best �2

values shows that the largest pulls and uncertainty reductions are found for the luminosity. Larger values
for the data luminosity by about 1.1 and 1.2 standard deviations are favoured for the minimisations in |y``|
and |�⌘``| respectively, leading to smaller values for the experimental cross section. For the MMHT14
PDF, the largest pulls and reduction of uncertainty by about 25% is found for an eigenvector (“eigen-
vector 21”) particularly sensitive to the sea and strange sea quark distribution, where previous ATLAS
data on on-shell W and Z production [6] is already the most constraining data set in one eigenvector
direction [20].

10 Conclusion

The double-di↵erential fiducial cross sections d2�/dm``d|y``| and d2�/dm``d|�⌘``| for the Drell–Yan and
photon induced production of dileptons in the invariant mass range 116 < m`` < 1500 GeV are measured,
as well as the single-di↵erential fiducial cross section d�/dm``. The measurements are performed in the
electron and muon channels using 20.3 fb�1 of integrated luminosity collected by the ATLAS detector at
the LHC in pp collisions at

p
s = 8 TeV. The two measurements are combined taking into account the

systematic uncertainty correlations. The combined cross sections achieve an experimental precision of
better than 1% at low m``, excluding the overall uncertainty in the luminosity measurement of 1.9%.

The fiducial cross sections are compared to fixed order theoretical predictions at NNLO accuracy using
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Figure 2: The photon PDF at scale µ

F

= 100 and 2000 GeV, with the breakdown between
coherent, incoherent and evolution components, defined as in (3) and (10) given. Also shown
is the NNPDF3.0 [10] result, with the corresponding 68% C.L. uncertainty bands. In the
lower plots the ratios of the di↵erent components to the total photon PDF are shown.

evolution component in (3) is dominant, and as a result the corresponding uncertainties are
under reasonable control5. As x increases, however, the phase space for the DGLAP q ! q�

emission process decreases, and the contribution from the coherent photon input becomes
more important. This e↵ect is evident in the NNPDF set, where the increasing contribu-
tion from the poorly determined input photon leads to a rapidly increasing uncertainty as x
increases.

In Fig. 3 we show the corresponding PDF luminosities, defined as
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where ⌧ = M

2

X

/s and f

i

is the corresponding PDF for parton i. As well as the �� case
discussed above, we also show for comparison the qq, qq (defined in both cases as a uniform
sum over the 5 corresponding quark flavours) and gg cases, using the same NNPDF set. For
our prediction, we now for illustration include an uncertainty band due to varying the inco-
herent component between x�(x,Q

0

) = 0 and the upper bound of (11), although in the plots
this is essentially invisible within the width of the central curves. Other uncertainties, due
for example to the quark (and at higher orders, gluon) PDFs entering the photon evolution
in (1), the use of the dipole approximation (9) for the elastic form factor and the choice of
Q

0

in (3) are not included here. These e↵ects are expected to be generally subleading in
comparison to that due to the incoherent input, and will be omitted in the results which

5The slight deviation between our results and the NNPDF sets, even accounting for the PDF uncertainties,
at lower x is due to the di↵ering ‘truncated’ solution to the DGLAP equation applied in the latter case.

9

Constraint from ATLAS data
• Recent ATLAS measurement of double-differential DY, extending to 
high mass                            . Sensitive to photon PDF.
• Bayesian reweighting exercise clearly disfavours larger NNPDF2.3 
predictions      consistent with our results.
• ATLAS data only sensitive to higher   , constraint as       largely 
artefact of reweighting. Would be interesting to include this in fit.

Mll < 1500GeV
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• Recent study of arXiv:1607.04266:
CERN-TH/2016-155

How bright is the proton?
A precise determination of the photon PDF
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It has become apparent in recent years that it is important, notably for a range of physics stud-
ies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the
proton. We show how the photon parton distribution function (PDF) can be determined in a model-
independent manner, using electron–proton (ep) scattering data, in e↵ect viewing the ep ! e +X

process as an electron scattering o↵ the photon field of the proton. To this end, we consider an
imaginary BSM process with a flavour changing photon–lepton vertex. We write its cross section
in two ways, one in terms of proton structure functions, the other in terms of a photon distribu-
tion. Requiring their equivalence yields the photon distribution as an integral over proton structure
functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of
1�2% over a wide range of x values.

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution
of photons, as originally calculated by Fermi, Weizsäcker
and Williams [1–3] for point-like charges. The corre-
sponding determination of the photon distribution for
hadrons, specifically f

�/p

for the proton, has however
been the subject of debate over recent years.

The photon distribution is small compared to that of
the quarks and gluons, since it is suppressed by a power
of the electromagnetic coupling ↵. Nevertheless, it has
been realised in the past few years that its poor knowl-
edge is becoming a limiting factor in our ability to pre-
dict key scattering reactions at CERN’s Large Hadron
Collider (LHC). Notable examples are the production of
the Higgs boson throughW/Z fusion [4], or in association
with an outgoing weak boson [5]. For W±H production
it is the largest source of uncertainty [6]. The photon
distribution is also potentially relevant for the produc-
tion of lepton-pairs [7–11], top-quarks [12], pairs of weak
bosons [13–18] and generally enters into electroweak cor-
rections for almost any LHC process. The diphoton ex-
cess around 750 GeV seen by ATLAS and CMS [19, 20]
has also generated interest in understanding f

�/p

.

The two most widely used estimates of f
�/p

are those
included in the MRST2004QED [21] and NNPDF23QED [22]
parametrisations of the proton structure. In the NNPDF
approach, the photon distribution is constrained mainly
by LHC data on the production of pairs of leptons,
pp ! `+`�. This is dominated by qq̄ ! `+`�, with a
small component from �� ! `+`�. The drawback of
this approach is that even with very small uncertainties
in `+`� production data [8], in the QCD corrections to
qq̄ ! `+`� and in the quark and anti-quark distribu-
tions, it is di�cult to obtain high precision constraints
on f

�/p

.

In the MRST2004QED approach, the photon is instead
modeled. It is assumed to be generated as emissions

from free, point-like quarks, using quark distributions fit-
ted from deep-inelastic scattering (DIS) and other data.
The free parameter in the model is an e↵ective mass-
scale below which quarks stop radiating, which was taken
in the range between current-quark masses (a few MeV)
and constituent-quark masses (a few hundred MeV). The
CT14QED [23] variant of this approach constrains the e↵ec-
tive mass scale using ep ! e� +X data [24], sensitive to
the photon in a limited momentum range through the re-
action e� ! e� [25]. A more sophisticated approach [26]
supplements a model of the photon component generated
from quarks (“inelastic” part) with a calculation of the
“elastic” component (whose importance has been under-
stood at least since the early 1970’s [27]) generated by
coherent radiation from the proton as a whole. This was
recently revived in Refs. [28–30].

In this article we point out that electron-proton (ep)
scattering data already contains all the information that
is needed to accurately determine f

�/p

. It is common
to think of ep scattering as a process in which a pho-
ton emitted from the electron probes the structure of the
proton. However one can equivalently think of it as an
electron probing the photon field generated by the proton
itself. Thus the ep scattering cross section is necessarily
connected with f

�/p

. A simple way to make the connec-
tion manifest is to consider, instead of ep scattering, the
fictitious process l+ p ! L+X, where l and L are neu-
tral leptons, with l massless and L massive with mass M .
We assume a transition magnetic moment coupling of the
form L

int

= (e/⇤)L�µ⌫F
µ⌫

l. Here e2(µ2)/(4⇡) ⌘ ↵(µ2)
is the MS QED coupling evaluated at the scale µ, and the
arbitrary scale ⇤ �

p
s (where

p
s is the centre-of-mass

energy) is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmetric
particle production at ep colliders [31]: there are two
ways of writing the heavy-lepton production cross section
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e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ �

p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where q = k � k0, Q2 = �q2, W
µ⌫

(p, q) is the pro-
ton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
is the lep-

tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M2 � m2

p

, where
p
s is the centre-of-mass en-

ergy and m
p

the proton mass, one obtains

� =
c
0

2⇡

Z
1

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2
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(�Q2)
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p
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z2Q2
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(x/z,Q2)
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�z2 � z2Q2
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+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/s, Q2

min

= x2m2

p

/(1�z), Q2

max

= M2/(1�
z) and c

0

= 16⇡2/⇤2.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
�2+3z� z2+

zp
�q

(z)

✓
ln

M2

µ2

+ ln
(1� z)2

z

◆#
e2
q

�
aq

+ . . . , (5)

with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
obtains (in the MS scheme):
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(x, µ2) =
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Z
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� z2F
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⇣x
z
,Q2

⌘#
� ↵2(µ2)z2F

2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. The last term in this equa-
tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

=
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

=
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q2 > x2m2

p

/(1 � x), which implies that the

Wµ⌫(p, q)

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]⇥ 2⇡�((k � q)2 �M2)

STEP 1 
work out a cross section (exact) in terms of F2 and FL struct. fns.

hadronic tensor,  
known in terms of F2 and FL

• Show how photon PDF can be expressed in terms of        and       . 
Use measurements of these to provide well constrained                
photon PDF.

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

(p, q)Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1

(x
Bj

, Q2) +
p
µ

p
⌫

/(pq)F
2

(x
Bj

, Q2) up to terms proportional
to q

µ

, q
⌫

, and the leptonic tensor is Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find

� =
c
0
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, (3)

where x = M2/(s � m2

p

), m
p

is the proton mass,
F
L

(x,Q2) = (1+4m2

p

x2/Q2)F
2

(x,Q2)�2xF
1

(x,Q2) and
c
0

= 16⇡2/⇤2. Assuming that M2 � m2

p

, we have
Q2

min

= x2m2

p

/(1� z) and Q2

max

= M2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c
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X
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1
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dz

z
�̂
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(z, µ2)
M2

zs
f
a/p

✓
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zs
, µ2
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, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
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+
↵2(µ2)
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ai

+ . . . , (5)

where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

(x,Q2) =
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

(x,Q2) =
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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LUXqed - making connection (1)

• While the formalism may appear different, in fact connection to our 
results can be quite simply made. Divide      integral into                 
and                 regions.

Q2 Q2 < Q2
0

Q2 > Q2
0

⇠ 1GeV2

•                  : keep on leading                term and                  Q2 > Q2
0

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have
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(q2) [4⇡W
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⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1
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Bj

, Q2) +
p
µ

p
⌫

/(pq)F
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, Q2) up to terms proportional
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⌫

, and the leptonic tensor is Lµ⌫(k, q) =
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⇣
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. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M2/(s � m2
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where in the MS factorisation scheme
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where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵
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L)n, the second one is
of order ↵2(↵
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L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
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s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵
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L)n and ↵2L2 (↵
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L)n [33]. Within our accuracy
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ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
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splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
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. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
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where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G
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is the dipole form G
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=
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understanding qualitative asymptotic behaviours, pre-
dicting f
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(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf
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(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f
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for x . 0.5. The data constrains the form factors for
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xf

�/p

(x, µ2) ! x

Z 1

x

dz

z

Z
µ

2

Q

2
0

dQ2

Q

2

↵(Q2)

2⇡

↵(Q2)

↵(µ2)
p

�q

(z)
X

e

2
q

q

⇣
x

z

,Q

2
⌘

,

↵S
LL

Cutoff



24

LUXqed - making connection (2)

• What about                     term? Recall Sudakov factor:         

of the photon PDF can be solved exactly, giving
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corresponds to the probability for the photon PDF to evolve from scales Q
0

to µ without
further branching; here P

q(l)�

(z) is the � to quark (lepton) splitting function at NLO in ↵
s

.
At LO it is given by

P
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(z) = N
a

⇥
z + (1� z)2

⇤
, (8)

whereN
a

= N
c

e2
q

for quarks andN
a

= e2
l

for leptons, while the factor of 1/2 in (7) is present to
avoid double counting over the quark/anti–quarks (lepton/anti–leptons). The Sudakov factor
is generated by resumming the term proportional to P

��

, due to virtual corrections to the
photon propagator, which is a relatively small correction to the photon evolution. However
this correction is not negligible, in particular for larger masses; we have S

�

⇠ 0.97� 0.93 for
M

X

= 20� 500 GeV.
As described above, the solution (5) is only exact if we neglect the dependence of the

quark and gluon PDFs on the photon PDF, through the P
q�

and P
g�

terms in their evolution,
respectively. These correspond to O(↵2) corrections to the photon evolution, and are therefore
formally higher–order in ↵, so that they can be safely neglected. To confirm this expectation,
we have compared (5) with the result of solving (1) numerically with the P

q�

term included in
the quark evolution, at LO in ↵

S

and only considering QED evolution (i.e. using the QECDS

scheme [27] described below) for concreteness; the contribution from P
g�

only enters at NLO
in ↵

S

and so will be further suppressed. As expected, the di↵erence is very small, and the
results are found to coincide to within less than 0.1%. We have also confirmed this by using
the APFEL evolution code [27], with the results with and without the P

q�

term in the quark
evolution coinciding to a very similar level, irrespective of the evolution scheme used.

The above equations correspond to the fully inclusive distribution, that is without any
gap survival conditions. To include these, we note that as shown in (6) the photon PDF
at a scale µ may be expressed as a sum of a term, �in(x, µ2), due to the input PDF, i.e.
generated by coherent and incoherent photon emission up to the scale Q

0

, multiplied by the
probability of no further emission up to the hard scale µ, and a second term, �evol(x, µ2), due
purely to DGLAP emission from the quark/gluons, which is independent of the input photon
PDF. For the coherent input component, there is naturally a large rapidity gap between
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comes from resumming self-energy contribution to DGLAP.
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• Connection to running of    . Find: 

Caveat: omits influence of    on quarks/gluons.

↵(Q2)/↵(µ2)
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2, µ2) =

↵(Q2)
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• To compare approaches, divide      integral into                              
and                  regions:

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have
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⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
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(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M2/(s � m2

p

), m
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is the proton mass,
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= 16⇡2/⇤2. Assuming that M2 � m2

p

, we have
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The same result in terms of parton distributions can

be written as
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where in the MS factorisation scheme
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+ . . . , (5)

where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,
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where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2
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)2, G
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(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f
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(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f
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/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

of the photon PDF can be solved exactly, giving
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where the photon Sudakov factor
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corresponds to the probability for the photon PDF to evolve from scales Q
0

to µ without
further branching; here P

q(l)�

(z) is the � to quark (lepton) splitting function at NLO in ↵
s

.
At LO it is given by

P
a�

(z) = N
a

⇥
z + (1� z)2

⇤
, (8)

whereN
a

= N
c

e2
q

for quarks andN
a

= e2
l

for leptons, while the factor of 1/2 in (7) is present to
avoid double counting over the quark/anti–quarks (lepton/anti–leptons). The Sudakov factor
is generated by resumming the term proportional to P

��

, due to virtual corrections to the
photon propagator, which is a relatively small correction to the photon evolution. However
this correction is not negligible, in particular for larger masses; we have S

�

⇠ 0.97� 0.93 for
M

X

= 20� 500 GeV.
As described above, the solution (5) is only exact if we neglect the dependence of the

quark and gluon PDFs on the photon PDF, through the P
q�

and P
g�

terms in their evolution,
respectively. These correspond to O(↵2) corrections to the photon evolution, and are therefore
formally higher–order in ↵, so that they can be safely neglected. To confirm this expectation,
we have compared (5) with the result of solving (1) numerically with the P

q�

term included in
the quark evolution, at LO in ↵

S

and only considering QED evolution (i.e. using the QECDS

scheme [27] described below) for concreteness; the contribution from P
g�

only enters at NLO
in ↵

S

and so will be further suppressed. As expected, the di↵erence is very small, and the
results are found to coincide to within less than 0.1%. We have also confirmed this by using
the APFEL evolution code [27], with the results with and without the P

q�

term in the quark
evolution coinciding to a very similar level, irrespective of the evolution scheme used.

The above equations correspond to the fully inclusive distribution, that is without any
gap survival conditions. To include these, we note that as shown in (6) the photon PDF
at a scale µ may be expressed as a sum of a term, �in(x, µ2), due to the input PDF, i.e.
generated by coherent and incoherent photon emission up to the scale Q

0

, multiplied by the
probability of no further emission up to the hard scale µ, and a second term, �evol(x, µ2), due
purely to DGLAP emission from the quark/gluons, which is independent of the input photon
PDF. For the coherent input component, there is naturally a large rapidity gap between
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Figure 2: The photon PDF x�(x, µ2) subject to the rapidity gap constraint (12), for di↵erent
values of � and for µ2 = 200, 104 GeV2, with the usual inclusive PDF shown for comparison.

We now consider some numerical results. As described above, for the input photon PDF,
following [25] we include a coherent component due to purely elastic photon emission and an
incoherent component due to emission from the individual quark lines, such that
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where q
t

is the transverse momentum of the emitted photon, and Q2 is the modulus of the
photon virtuality, given by
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are the usual proton electric and magnetic form factors
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in the dipole approximation, where G
E

and G
M

are the ‘Sachs’ form factors. The incoherent

6

•                  - standard DGLAP (             ).
•                  - separates into:

‣ ‘Elastic’ = coherent component. Treatment very similar.
‣ ‘Inelastic’ = incoherent component. Treatment different.
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where the proton hadronic tensor (as defined
in [32]) is given by W
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. In Eq. (1)

we introduced the physical QED coupling
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ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M2/(s � m2

p

), m
p

is the proton mass,
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(x,Q2) = (1+4m2
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x2/Q2)F
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The same result in terms of parton distributions can

be written as
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where in the MS factorisation scheme
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where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,
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where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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LUXqed - making connection (3)
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LUXqed - incoherent component
• The incoherent component is extracted from fit to low      structure 
function data               . Divided into two pieces:

‣ Continuum (                          ) : take HERMES fit to structure function 
data from various experiments, extending to              (photoproduction). 

‣ Resonance region (                           ): consider two different fits to 
world data.

! Places important constraints.

W 2 . 3.5GeV2

W 2 & 3.5GeV2

Q2 = 0

• Using connection made in previous slides, can compare our 
approach with this.

p ! �X

Q2
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LUXqed - comparison (1)
• Compare photon at       in our approach (‘radiative ansatz’) and 
using low      structure function data:

0

0.005

0.01

0.015

0.02

0.025

0.0001 0.001 0.01 0.1

x�(x,Q2
0 = 2GeV2)

x

Radiative ansatz

Low Q2 < Q2
0 continuum

Resonance contribution

Resonance + Continuum

1e-05

0.0001

0.001

0.01

0.0001 0.001 0.01 0.1

x�(x,Q2
0 = 2GeV2)

x

Radiative ansatz

Low Q2 < Q2
0 continuum

Resonance contribution

Resonance + Continuum

‣ Continuum contribution less than the     upper bound set by our model, 
and similar in shape.
‣ But resonance contribution flatter (                   ) and exceeds our result 
at higher    . ‘Christy-Bosted’ fit

W

2 ⇠ Q

2
/x

x

⇠

Q0

Q2
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LUXqed - comparison (2)
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1.2
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0.0001 0.001 0.01 0.1

x�

HKR
/x�

LUX , µ = 100GeV

x

HKR

HKR (incoh. LUX)

• Consider ratio of PDFs at                    . Lower end of HKR band 
given by setting                   (for illustration).
• Complete consistency found at lower   , but deviation as        
(resonance contribution).
• Check: result of our approach + incoherent calculated using structure 
function data within          of LUXqed over all relevant   .

µ = 100GeV

�
incoh

= 0

x x "

xO(%)
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Photon PDF: outlook
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        Possible to unify approaches. Consider constraints from both 
LHC and low      structure function data. Full treatment of 
uncertainties and coupled DGLAP evolution.

Q2

• Have demonstrated that standard PDF approach very close to 
LUXqed when taking same data input for              .

!
�(x,Q2

0)
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Conclusions

• As NNLO QCD precision becomes the standard, the increasing 
relevance of electroweak corrections is clear. Important part of this is 
photon-initiated processes: requires the introduction of a photon PDF.
• Previous approaches: either completely agnostic (NNPDF) or 
introduce model for photon emission off quarks (MRST/CT).
• Crucial to include coherent               emission term as well: dominant 
contribution, leads to sizeable reduction in uncertainties.
• Considering              and         production at LHC/FCC, the potential 
dominance of photon-initiated mechanism not supported.
• Outlook: MMHT work ongoing, using approach outlined above in 
global fit context.
• LUXqed: new approach, but connection can be made.

p ! p�

W+W� l+l�


