

Update on the CT14 QED PDFs

C.-P. Yuan Michigan State University In collaboration with CTEQ-TEA

September 13, 2106

PDF4LHC Meeting@ CERN, Switzerland

CTEQ-TEA group

CTEQ – Tung et al. (TEA)
in memory of Prof. Wu-Ki Tung,
who established CTEQ Collaboration in early 90's

• Current members:

Sayipjamal Dulat (Xinjiang U.),

Tie-Jiun Hou, Pavel Nadolsky (Southern Methodist U.), Jun Gao (Argonne Nat. Lab.), Marco Guzzi (U. of Manchester), Joey Huston, Jon Pumplin, Dan Stump, Carl Schmidt, CPY (Michigan State U.)

CT14 photon PDFs: arXiv: 1509.02905 CT14QED and CT14QEDinc

Implications of CMS W+W⁻ data to photon PDFs

arXiv: 1603.04874

CT14QED and CT14QEDinc PDFs

CT14QED PDFs from Isolated Photon Production in Deep Inelastic Scattering

CT14QED: inelastic contributions only CT14QEDinc: inclusive

Schmidt et al., arXiv: 1509.02905

Measurement of isolated photon production in deep inelastic ep scattering

CTEQ

ZEUS Collaboration, arXiv:0909.4223 [hep-ex].

$$e p \rightarrow e \gamma + X$$

At least one reconstructed track, well separated from the electron, was required, ensuring some hadronic activity which suppressed deeply virtual Compton scattering (DVCS) to a negligible level.

Isolated photons can also be produced at values of WX less than 5GeV in 'elastic' and 'quasi-elastic' processes (ep \rightarrow ep) such as DVCS and Bethe–Heitler photon production. Such events were simulated using the GenDVCS and Grape-Compton generators. The contribution of these elastic processes was negligible after the selections described in Section 3.

CT14QED Photon PDF Parametrization

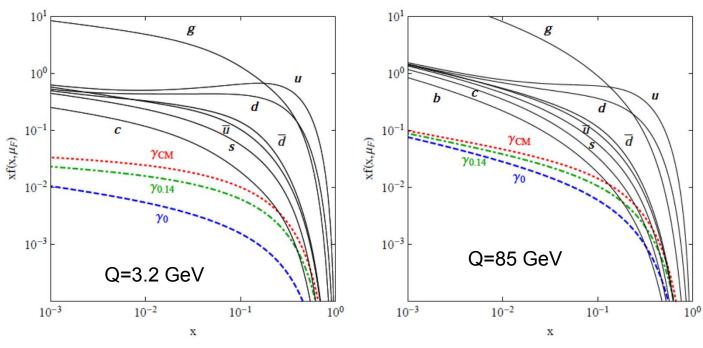
CTEQ

"Radiative ansatz" for initial Photon PDFs (generalization of MRST choice)

where u^0 and d^0 are "primordial" valence-type distributions of the proton. Assumed approximate isospin symmetry for neutron. Here, we take A_u and A_d as unknown fit parameters.

MRST choice: $A_q = \ln(Q_0^2/m_q^2)$ "Radiation from Current Mass" – CM

We use $u^0 = u^p \equiv u^p(x, Q_0)$, $d^0 = d^p \equiv d^p(x, Q_0)$ and reduce the number of parameters further (for initial study) by setting $A_u = A_d = A_0$


Now everything effectively specified by one unknown parameter:

 $A_0 \Leftrightarrow p_0^{\gamma} \equiv p^{\gamma/P}(Q_0)$ (Initial Photon momentum fraction)

CT14QED Photon PDFs (in proton)

CTEQ

γ momentum fraction:

$p^{\gamma}(Q)$	$\gamma(x,Q_0)=0$	$\gamma(x,Q_0)_{\rm CM}$
Q = 3.2 GeV	0.05%	0.34%
Q = 85 GeV	0.22%	0.51%

Photon PDF can be larger than sea quarks at large x!

Initial Photon PDF still \leftarrow significant at large Q.

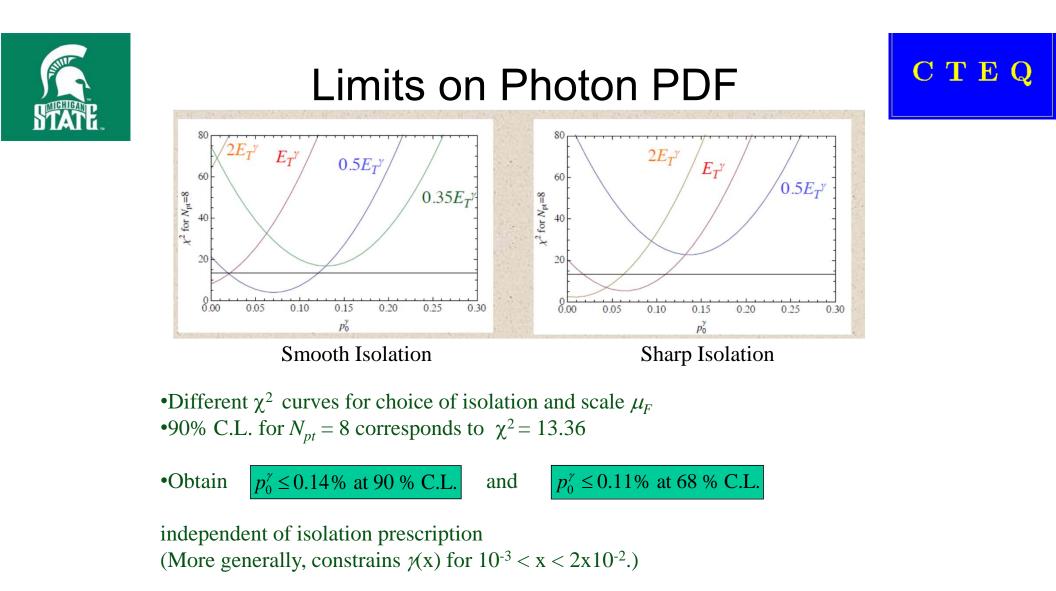
Constraining Photon PDFs

- 1) Global fitting
 - Isospin violation, momentum sum rule lead to constraints in fit
 - We find p_0^{γ} can be as large as ~ 5% at 90% CL, much more than **CM** choice
- 2) Direct photon PDF probe
 - DIS with observed photon, $ep \rightarrow e\gamma + X$
 - Photon-initiated subprocess contributes at LO, and no larger background with which to compete
 - But must include quark-initiated contributions consistently
 - Treat as NLO in α , but discard small corrections, suppressed by $\alpha \gamma(x)$.

 $ep \rightarrow e\gamma + X$

Subprocess contributions:

- LL Emission off Lepton line Both quark-initiated and photon-initiated contributions are $\sim \alpha^3$ if $\gamma(x) \sim \alpha$ Collinear divergence cancels (in d=4-2 ϵ) by treating as NLO in α with $\gamma^{\text{bare}}(x) = \gamma(x) + \frac{(4\pi)^{\epsilon}}{\epsilon} \Gamma(1+\epsilon) \frac{\alpha}{2\pi} (P_{\gamma q} \circ q)(x)$ (MSbar)
- QQ Emission off Quark line Has final-state quark-photon collinear singularity


CTE

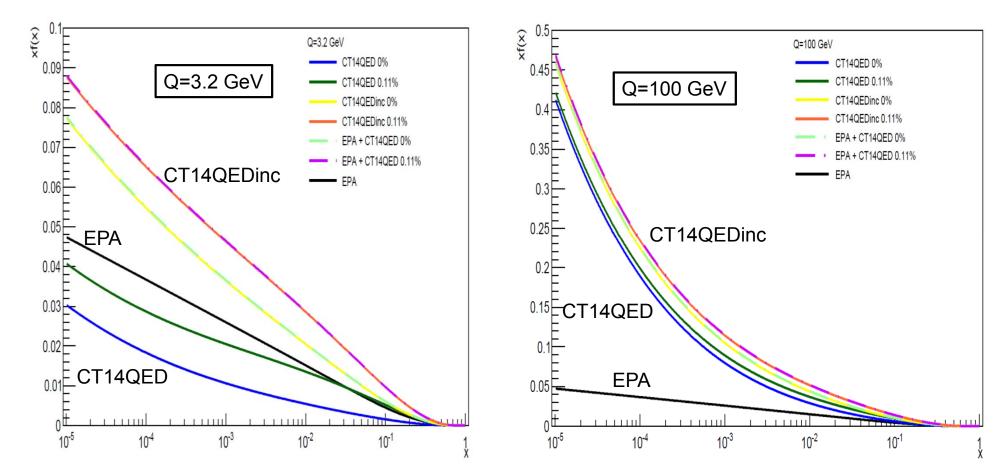
QL Interference term

Negligible < about 1% (but still included)

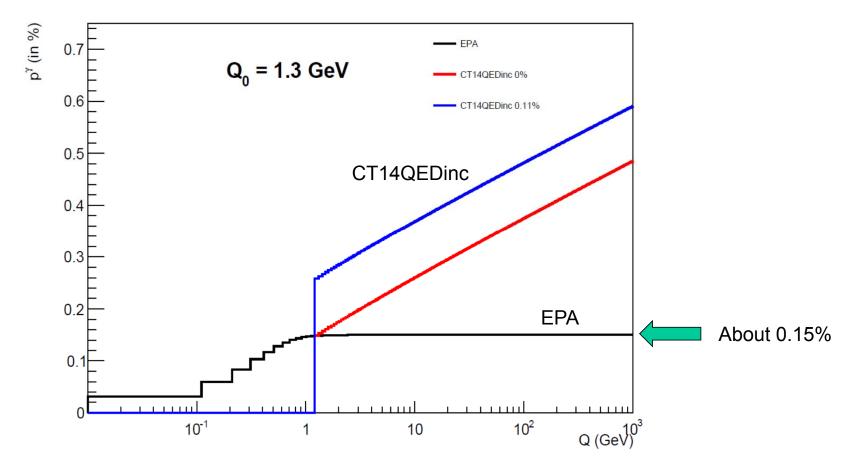
Previous calculations:

quark-initiated only – (GGP) Gehrmann-De Ridder, Gehrmann, Poulson, PRL 96, 132002 (2006) photon initiated only – (MRST), Martin, Roberts, Stirling, Thorne, Eur. Phys. J. C 39, 155 (2005)

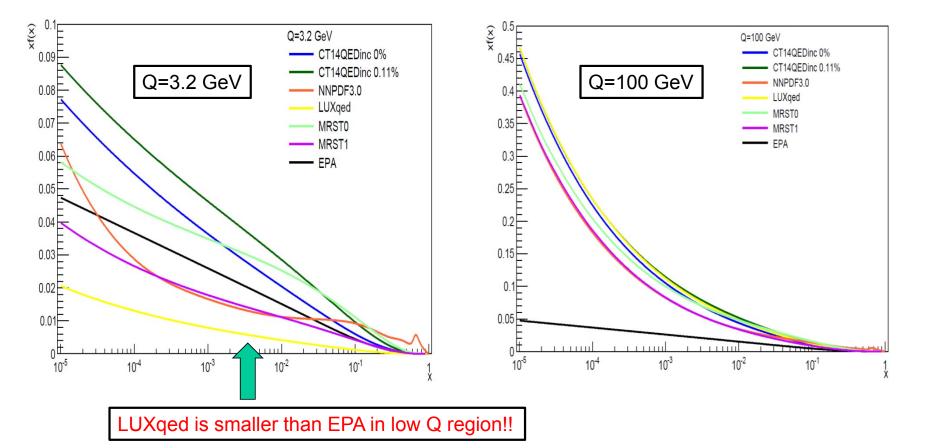
CT14QEDinc PDFs



- To obtain the inclusive photon PDFs, we added the elastic component, obtained from the Equivalent Photon Approximation (EPA), Budnev et al. (1975), at Q₀ = 1.3 GeV, to CT14QED.
- Then evolve it to any larger Q value using DGLAP evolution at LO in α and NLO in α_s



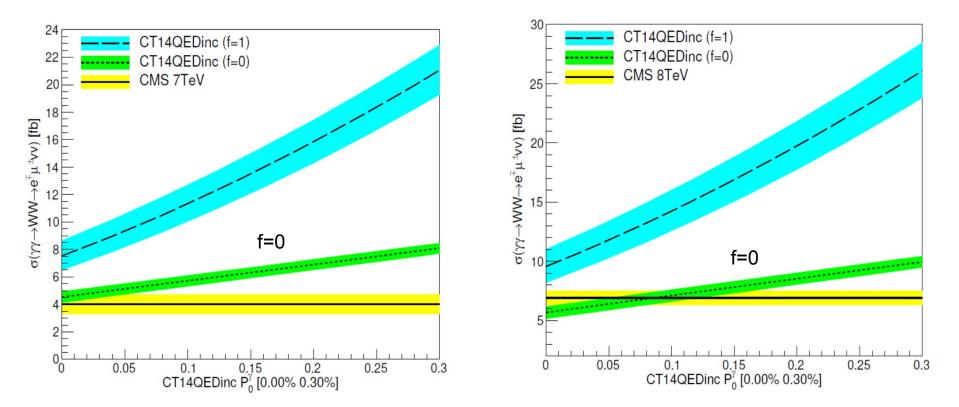
CT14QED and CT14QEDinc PDFs



Fraction of photon momentum in proton CT14QEDinc

Compare various photon PDFs

Ababekri, et al., arXiv: 1603.04874

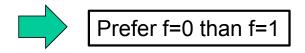

Implications of CMS W+W⁻ data to photon PDFs

A search for exclusive or quasi-exclusive $\gamma \gamma \rightarrow W^+W^-$ production $pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}$. CMS Collaboration, arXiv:1305.5596 [hep-ex] (at 7 TeV) and CMS-PAS-FSQ-13-008 (at 8 TeV) requiring zero extra tracks at the $\mu^{\pm}e^{\mp}$ vertex

Scale uncertainty in CT14QEDinc PDFs

CTEQ

Theory bands indicate scale uncertainties, varying around WW invariant mass by a factor of 2.


Compare CMS Data (at 7 TeV) to various photon PDFs

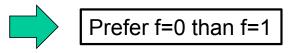
CMS 7TeV MRST (f=0) CT14QEDinc (f=0) MRST (f=1) CT14QEDinc (f=1) NNPDF (f=0) LUXged (f=0) + NNPDF (f=1) LUXged (f=1) ô -5 25 0 5 10 15 20 30 $\sigma(\gamma\gamma \rightarrow W^{+}W^{-} \rightarrow e^{\pm}\mu^{\mp}vv)$ [fb]

f=0 does not include doubledissociation contribution.

f=1 includes single- and doubledissociation contributions.

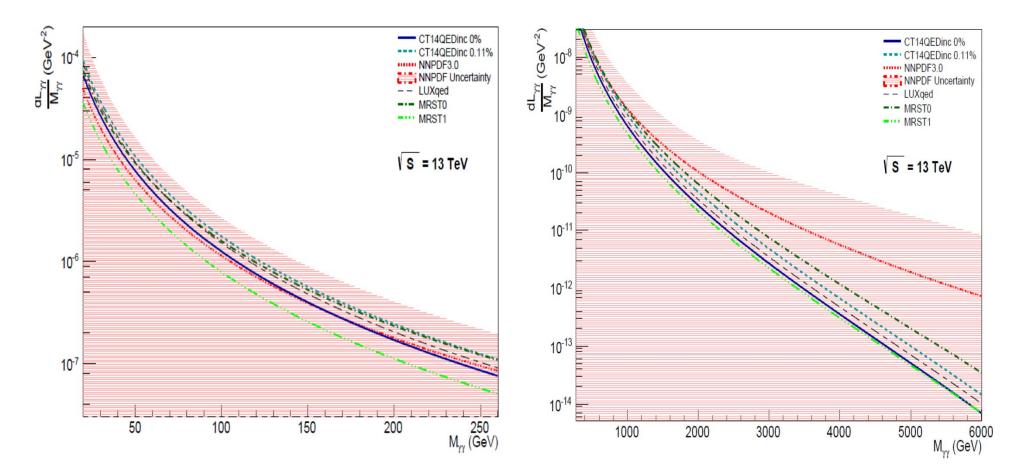
 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

requiring zero extra tracks at the $\mu^{\pm}e^{\mp}$ vertex



Compare CMS Data (at 8 TeV) to various photon PDFs

f=0 does not include doubledissociation contribution.


f=1 includes single- and doubledissociation contributions.

requiring zero extra tracks at the $\mu^{\pm}e^{\mp}$ vertex

Photon-Photon Luminosity

Thanks for your attention!