

TREATMENT PLANNING

Modelling chemo-hadron therapy

Lara Barazzuol | Valencia | 19 June 2009

Contents:

- Background PARTNER project
- Glioblastoma & treatment
 - Research questions
- Clinical Trial model: outline
 - Temozolomide: Scenarios 1 and 2
 - Clinical trial model conclusions
- Further work
 - Effects of concurrent chemo-hadron therapy
 - TMZ radiosensitization in T98G cells
 - Image-based model

Background:

- BSc Biomedical engineering at the University of Padova, Italy
- MSc Bioengineering at the University of Padova, Italy
- MSc project at the University of Surrey, UK modelling brain tumour response to radiotherapy and chemotherapy considering radiobiological aspects
- PARTNER project treatment planning:
 - modelling concurrent chemo-radiotherapy and chemo-hadron therapy
 - measuring effects of concurrent chemotherapy on cell survival for a variety of ions

Mathematical models & biology:

Glioblastoma & treatment:

- Most frequent and malignant adult primary brain tumour
- For many years, the conventional treatment has been maximal surgical resection followed by radiotherapy (RT)
- In 2005 a phase III trial (EORTC-NCIC) has confirmed the benefit of temozolomide (TMZ) chemotherapy: increase of 16.1 % in 2 year survival, for patients receiving RT with TMZ compared with RT alone

(Stupp et al. 2005)

RT alone: 60 Gy

RT + TMZ: 60 Gy +

Concurrent TMZ+ 6 cycles of TMZ alone

Research questions:

- What is the optimum combination and scheduling of RT and TMZ?
- Does the major benefit of TMZ come from the concurrent phase or the six cycles of adjuvant TMZ?
- Does TMZ sensitise glioblastoma to the effects of radiotherapy?
- Is the 6 months of adjuvant TMZ working independently to kill cancer cells?
- Which are TMZ effects with protons or heavier ions?

Mathematical models and radiobiological experiments can help us to elucidate TMZ role

Clinical trial model: outline

- 1. Individual patient and treatment model:
 - first order interaction between cancer and normal cells
 - tumour response to radiotherapy and chemotherapy
 - response to delay before treatment
- Simulation of in silico trial:
 - Monte Carlo simulation to generate a population of patients
- 3. Fitting to real clinical survival data:
 - e.g. EORTC-NCIC trial, two arms:
 - RT alone
 - RT + concomitant and adjuvant TMZ

Temozolomide - Scenario 1:

TMZ mediated-radiosensitization: • change in the α/β ratio

- concomitant phase

Temozolomide - Scenario 1:

Comparison of the probability distributions of survival fraction, after a single 2 Gy fraction of RT

Temozolomide - Scenario 1:

Synergy between RT and TMZ: • α/β decreases from 12.5 Gy to 3.1 Gy

Temozolomide - Scenario 2:

TMZ independent cytotoxicity: • simple PK/PD model

- adjuvant phase

Temozolomide - Scenario 2:

Probability distribution of the chemo-sensitivity resulting from fitting to the RT+TMZ data

Clinical trial model-conclusions:

- The EORTC-NCIC trial analysed with our model suggests that TMZ is mainly a radiosensitiser
 - hence the activity of TMZ as single agent seems to have a more marginal benefit
- Major therapeutic efficacy of the concomitant phase
 - little value in giving neo-adjuvant or adjuvant TMZ
- TMZ addition appears to change the radiobiological parameters
- Not yet clear how much better fully co-optimised RT and TMZ could be...

Further work:

- We can use the model to evaluate and design new clinical trials: e.g. - outcome of the dose-dense TMZ trial;
 - possible palliative RT+TMZ trial;
 - RT dose escalation given the apparent change in the α/β ratio (e.g. 74 Gy in 6 weeks + TMZ);
 - modelling interruptions in treatment.
- We can look at TMZ synergy with protons or heavier ions vs. photons using the vertical ion beam line

TMZ-radiosensitisation in T98G cells SURREY

- T98G cells: human glioblastoma
- RT: 1-6 Gy, Pantak kV unit
- TMZ: 25-50 μM

- MGMT status: prognostic factor
 - unmethylated MGMT promoter: little or no benefit from TMZ
- T98G cells exhibit the highest MGMT activity

Image-based model:

A model based on IMRT-IMPT images to estimate tumour control probability (TCP) and normal tissue complication probability (NTCP) using radiobiological information: SF values (e.g. with or without TMZ, in hypoxic conditions, with heavier ions...)

Acknowledgements

- The Addenbrooke's Hospital
- The Department of Oncology, University of Cambridge
- The Royal Surrey County Hospital
- Marie Curie Research Training Network 'PARTNER'
- The Gray Cancer Institute
- Surrey Ion Beam Centre
- The Wolfson Foundation
- The Health Foundation

