Summary of First ILC-LET Workshop

PT for K. Kubo, D. Schulte, PT 11-Feb-2006

A few general comments

- This was perhaps an optimal workshop size
 - About 30 participants
 - 17 prepared talks
 - 1 teleconference session
- Lots of time for discussion
- Lots of time for informal, "one on one" work
- Able to assign "homework" and collect it within the time frame of the workshop

Lattice Design

- No prepared talks, just discussion
- Status:
 - BDS:
 - in pretty good shape though not final
 - Handled "in-house" by BDS Area System
 - Main Linac:
 - No lattice which represents qualitative features of baseline
 - 15 GeV initial energy
 - 4 CM / quad
 - Curved to follow gravitational equipotential
 - No lattice for e+ production undulator in e- linac
 - RTML:
 - Lattice which represents qualitative features of BC
 - New lattice of turnaround and spin rotator
 - May become baseline after some review
 - No lattice of collimation, DR Stretch, skew correction, linac launch

Lattice Design (2)

- Action items agreed upon:
 - Generate a qualitatively-correct linac lattice
 - So that simulation studies can begin, codes can be tweaked to handle curvature, etc.
 - Done, lattice will be web-posted next week
 - Release BC lattices in their present state
 - Get started on BC tuning and combined BC + linac studies
 - Done √
 - http://www-project.slac.stanford.edu/ilc/acceldev/LET/BC/G3BCDecks
 - Release baseline lattices as they become available
 - Presumably these will hang off of the ILC BCD website
 - BCD website will become de facto lattice repository for LET
 - Plan is for all baseline lattices to be complete by mid-April

Lattice Design (3)

- Who will do the lattice designs for the baseline?
 - BDS and DR groups will do designs "in house"
 - RTML work will probably be done at SLAC and LBL
 - Essentially "in house" for RTML group
 - As for main linac, sources, and undulator:
 - ILC Accelerator Physics group will help out if asked by area leaders...
 - Very large overlap between ILC AP TS and LET group!
 - ...but nobody will be offended if area leaders decide to take care of this on their own without involvement of AP TS
 - PT to discuss with linac, e+, e- leaders at FNAL next week

Main Linac Emittance Preservation

- An area of intense interest for many years, but still not an exhausted field
- Several methods of steering for emittance preservation studied
 - DFS (quite a lot of work on this)
 - KM
 - BA
 - QS121 (quad shunting + 1:1 steering)
- Sometimes surprising variation in results when 2 or more people study the "same" method

Main Linac (2)

- Several studies of impact of the curved tunnel presented
 - So far nobody foresees serious problems
 - Still a lot of work to do here
- Still not as much inclusion of dynamic effects in the static tuning as we would like
- Updated presentation on the impact of LRWFs with frequency-splitting and mode rotation
 - Couples x jitter into y deflections
 - Can be addressed by splitting the tune of the lattice
 - Baseline is 75/60 lattice for this reason
- Reviewed ML AS list of questions
 - Answered as many as we could

Main Linac (3) – Action Items

Top priorities:

- migration to more up-to-date lattice
- convergence of the various different implementations of tuning methods
 - Important to have as many methods as possible qualified by multiple people
 - First emphasis on DFS because of large number of people who have tried it
- Begin to incorporate BC
 - Non-Gaussian distribution in z may have an impact
 - May permit innovations in ML tuning
 - Use BC RF to vary energy at ML launch
 - Use BC dispersion knobs to tune ML dispersion!
 - Work on this started (still in an early stage)

Beam Delivery System

- Very detailed simulation of static tuning
 - Magnet alignment and knob tuning at IP
 - Achieving 80% of expected geometric luminosity seems "straightforward"
 - Reclaiming the last 20% seems somewhat arduous
 - Need a better technique or diagnostics?
 - Required tuning steps subtle?
 - Example correcting the x'y' coupling at the IP ("unrolling" spot on divergence wire scanner) seems to make it possible to raise luminosity
- Quite a variety of signals available for final tuning
 - Beam-beam deflections, pairs, beamstrahlung...
 - All have their benefits and drawbacks

Beam Delivery System (2) – Action Items

- More seeds!
 - Minor problem with batch cluster to resolve
- Need other LET'ers to verify the results
- Continue development of simulation
 - Dynamic effects and feedback
 - Include other beam and actual beam-beam based tuning signals
 - More optimal method of setting up the initial orbit

Ring to Main Linac

- Rather complicated system with a lot of subsections that do wildly different things
 - Bunch compression, collimation, spin rotation, coupling correction...
- Top priority is completing baseline design
 - Should be done by early April
 - To be reviewed at the DESY meeting
- Next priority: static tuning studies of subsystems and/or complete system
 - First example shown this week correction of cavity pitch aberration
 - Frightening, but it turns out there were a couple of bugs, it's really not as bad as I said it was on Thursday!

Polarization

- Spin rotator design for RTML complete
 - Allows polarization to be set to any desired orientation at IP
 - Emittance growth small for DR level energy spreads (1.5e-3), grows as square of energy spread
 - le, do not attempt to spin-rotate compressed bunch with large energy spread!
- Quite a few tools for spin tracking now
 - Two tuning codes (BMAD, Merlin) now have spin tracking
 - Study spin behavior in tuned systems and over time as beamline changes and corrections change

Instrumentation

- Extensive presentation on standard ILC instrumentation
 - BPMs, laser profile monitors, bunch length monitors
 - Including cost drivers (where known), which will help lattice designers make optimized choices
 - Other system constraints (ie, how to get the photons or electrons from laser wire)
- Top priority: inventory instruments used in tuning simulations and document the performance assumptions that went into them

Preparation for RDR

- Extensive discussion on what we want to achieve
- Top priority: sufficiently complete static tuning studies to credibly support luminosity promises
 - Or refute them!
 - Understand costs "We can make 2e34, but the tolerances on the alignment must be tightened by X%"
- Mapped out the tasks and (in general) who will do them
 - In some cases we only know the institution, in other cases an actual name
 - Dangerous! Harder to hold a lab's feet over the fire than a person's!
 - Caution we've had ample time in the past to do everything we now want to do in the future
 - LET work generally requires serious time commitment
 - Easy to get chewed up by hundreds of small, short-term crises

How to Keep Work Going

- D. Schulte and K. Kubo will provide overall guidance of the effort
 - Appropriate they are AP TS leaders, and have a long history in this area
- Set up to use the Snowmass ilc-accel-wg1 mailing list for ongoing LET communications
 - PT will take care of this next week, after Fermilab meeting
- Set up a website repository for results of algorithm crosschecking
 - Jeff Smith will take care of this
 - Evolve into overall LET repository website?
- Regular phone meetings on algorithm cross-checking under discussion
 - Set up some sort of regular discussion on more general LET work
 - Maybe occasional 3-region phone or video meetings and more regular single-region meetings