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Introduction

e As previously shown, both for ILC (Tesla lattice) and CLIC, tuning bumps work very well as a complement
to beam-based alignment.

e A study of the robustness of the bumps has now been carried out.

e The bump performance has also been studied for the new ILC lattice (32-cavity quadrupole spacing, 75°

and 60° FODO-cell phase advance).

- In this case the bump tuning has been simulated both in combination with DFS and with 1tol-correction
respectively.

e Initial studies for CLIC indicate that the bumps will work well in a dynamic environment.
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Emittance/luminosity tuning bumps

e For ILC two different kinds of bumps have been used.

e The effect of the tuning is evaluated with two laserwires at the end of the linac (see next slide).

Dispersion bump (ILC) Dispersive wakefield bump (ILC)
e Two knobs adjust offset and angle dispersion e Two pairs of quadrupoles used. Separated by a
independently. phase advance of 60°,
e No realistic implementation, particle coordi- e Quadrupoles of a pair separated by 360°. First
nates are simply adjusted to emulate a disper- quad kicks beam out of its ideal orbit and sec-
sion change. ond kicks it back.
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Wide laserwires for emittance/luminosity measurement
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A remark on DFS bpm resolution

e Initial misalignments according to TRC model.
o Left: After DFS, Right: After DFS and tuning of two dispersion bumps.

e Energy differences of the DFS test beams created by gradient changes. 4 different BPM resolutions.
Resolution seems to be unimportant for the emittance.
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o Left: After DFS, Right: After DFS and tuning of two dispersion bumps.

A remark on DFS bpm resolution (cont.)

e Assuming that DFS test beams have different energies already at entrance of main linac. Before bump

tuning their is a certain difference for different resolutions. The difference is negligible when bumps have
been tuned.
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Performance of the tuning bumps

e Comparison of the performance of DFS only to the performance of DFS complemented by 2 dispersion or
3 dispersion and 2 wakefield bumps.

e BPM resolution: 10pum. Test beam energy differences by gradient changes.
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Robustness of tuning bumps

e Emittance histogram for simulations with and without noise e Tolerance of final machine state to different
(3%) in laserwire measurements. noise sources. Initially e = 20.63 nm.
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Simulations of new ILC lattice

e Simulations performed using new ILC lattice with 32-cavity quadrupole spacing and 75°, 60° phase advance.

e BPM resolution: 10um. Test beam energy differences by gradient changes. 3% noise in laserwire mea-
surements.

e Even when only 1tol-correction and bump tuning is used the final emittance growth is less than 8nm in
90% of all cases.
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CLIC bump studies in dynamical environment

e Ground motion according to ATL-law. 40 feedbacks, each consisting of two quadrupoles and three bpms.

Feedback gain=0.02.
e 5 wakefield bumps each implemented as offsets of two acc. structures.

e Response matrix between acc. structures and bpms calculated. Information used to steer beam back to
ref. trajectory after each bump adjustment.

e Bpm resolution enters both for feedback corrections and for the reponse matrix calculation.
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Conclusions

e Using dispersion and wakefield bumps as a complement to DFS reduced the emittance from unacceptable
to acceptable levels.

e The bpm resolution does not seem to be of importance when both DFS and bumps are used.

e Studies show that noise in the “luminosity” measurement increases the final emittance slightly, but final
emittance is still very low.

e For the final states of the machines, tolerance levels to different noise sources were calculated with good
results.

e For the new ILC lattice the results are very good and simulations also show that good results can be
obtained using only 1tol-correction followed by bump tuning.

e Initial studies of wakefield bumps for CLIC in a dynamic environment (incl. ground motion) indicate that
bump tuning will also work under these circumstances. Similar studies will be carried out for [LC.
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