Prospects for Beyond Standard Model Higgs Boson Searches at the LHC

Jan Schumacher On Behalf of the ATLAS and CMS Collaborations

Institut für Kern- und Teilchenphysik der Technischen Universität Dresden

Weak Interactions and Neutrinos WIN '09

• • • • • • • • • • • • •

Outline

Introduction Experiments

MSSM Higgs Boson Searches

Neutral MSSM Higgs Bosons h/H/ACharged MSSM Higgs Bosons H^{\pm}

Searches for Non-Supersymmetric Higgs Bosons

Invisible Higgs Boson Searches Radions in 5D Randall-Sundrum Model

More Searches

Conclusion and Outlook

イロト イ団ト イヨト イヨト

Experiments

ATLAS

CMS

(日) (同) (三) (三)

- Excellent Particle Reconstruction and Identification Performance
- Precise Calorimeters with Large Coverage (up to $|\eta| \approx$ 4.9 for jets)
 - good E_T^{miss} resolution
- Toroidal Magnetic Field for Muon p_T (ATLAS)
- High Field (4T instead of ATLAS 2T) Central Solenoid (CMS)

MSSM Higgs Sector

- Five Physical Higgs Bosons
 - two CP-even: h and H
 - one CP-odd: A
 - two charged: H[±]
- Two Free Model Parameters describe the Higgs sector at tree level
 - mass of CP-odd neutral boson A
 - ratio of higgs field vacuum expectation values tan β

Large Loop Corrections Enter

- $m_h < m_Z
 ightarrow m_h \lesssim 130 {
 m GeV}$
- fixed in benchmark scenarios
- *m_h* max (maximal mixing)
- no mixing in stop sector

Unless otherwise noted, all plots from

- CMS: Physics Technical Design Report Vol.II (CERN/LHCC 2006-021)
- ATLAS: Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics (CERN-OPEN-2008-020)

イロト イ団ト イヨト イヨト

Production and Decay of Neutral Higgs Bosons h/H/A

- Markedly Different from Standard Model (for two of the three bosons)
 - WW and ZZ decays suppressed or absent
 - coupling to 3rd generation fermions enhanced in large parts of parameter space
- Direct Production via Gluon Gluon Fusion dominates at low tan β and low m_A (φ ∈ h, H, A):

000

b-quark Associated Production dominates at high tan β:

(日) (同) (日) (日)

- \blacktriangleright Decay Mostly to *bb* and $\tau\tau$
 - *bb* BR \approx 90% (very difficult)
 - $\tau\tau$ BR \approx 10%
 - $\mu\mu$ BR \approx 0.03%

$\textit{bbh}/\textit{H}/\textit{A},\textit{h}/\textit{H}/\textit{A} \rightarrow \mu\mu$

- Motivation
 - BR small in SM but enhanced by tan β
 - excellent mass resolution
 - potential to distinguish between h, H and A in the intensive coupling region

Backgrounds and Event Selection

- \blacktriangleright trigger and cut on μ
- Z+ jets: b-tagging
- tt̄: E_T^{miss}, central jet veto,
 μ angular correlations
- $t\overline{t}$: estimated by data driven methods

CMS Analysis

soft *b*-tag to improve low
 p_T efficiency

ATLAS Analysis

- 0 *b*-tagged jets dominated by *Z*+ jets
- ► ≥ 1 b-tagged jets dom. by tt̄ and Z+ jets

$bbh/H/A, h/H/A \rightarrow \mu\mu$ Discovery Potential

Results

- ► low to medium mass coverage for tan β > 20
- sensitivity to tan β from Higgs boson width (CMS)

$bbh/H/A, h/H/A \rightarrow \tau(\text{lep})\tau(\text{had}) \text{ (CMS)}$

- Motivation
 - good BR because of hadronic decay
 - e/μ to trigger on
- Trigger
 - single e/μ or $e/\mu + \tau$

- Backgrounds and Event Selection
 - τ selection, exactly one *b*-tag
 - ► tt̄: jet veto, E_T^{miss} to lepton correlation
 - $t\bar{t}$ dominant for μ +jet
 - Z+ jets, $Z \rightarrow$ leptons $\propto t\overline{t}$ for e+ jet

$bbh/H/A, h/H/A \rightarrow \tau(lep)\tau(had)$ (CMS) Discovery Potential

- good for intermediate to low mass range
- (ATLAS analysis in preparation)
- ▶ at high masses higher sensitivity in the fully hadronic channel

$bbh/H/A, h/H/A \rightarrow \tau \tau \rightarrow 2\ell 4\nu$ (ATLAS) / $e\mu 4\nu$ (CMS)

Motivation

- two leptons to trigger on
- collinear approximation for $m_{\tau\tau}$
- good at low mass

Backgrounds and Event Selection

- $Z \rightarrow ee/\mu\mu$: cut on dilepton mass, E_T^{miss}
- $Z \rightarrow \tau \tau$ (dominates at low mass): *b*-tag
- $Z \rightarrow \tau \tau$: shape and normalization estimated by data driven methods
- tt
 (dominates at high mass): veto additional jets
- cut on displaced vertices of τ s (CMS)

Systematic Uncertainties

- jet energy scale / resolution
- b-tagging efficiency

$bbh/H/A, h/H/A \rightarrow \tau \tau \rightarrow 2\ell 4\nu$ (ATLAS) / $e\mu 4\nu$ (CMS)

Discovery Potential

- best at low mass
- needed tan β rises quickly with mass

$bbh/H/A, h/H/A \rightarrow \tau (had) \tau (had) (CMS)$

Motivation

- high hadronic branching ratio
- dominant $h/H/A \rightarrow bb$ overwhelmed by QCD
- au tagging makes channel feasible
- sensitivity for high masses

Event Selection

- hadronic final state, need good τ -trigger
- τ identification
 - isolation in tracker
 - 1 or 3 tracks, hard leading track (pt > 50GeV)
 - $\blacktriangleright~\approx$ 50% efficiency at a rejection of 100
- exactly one b-tagged jet

Backgrounds and Systematics

- QCD jets: shape from data-driven method using signal free same-sign τs
- uncertainty of \(\tau\) fake rate due to tracker misalignment
- E_T^{miss} scale uncertainty

$h \rightarrow \gamma \gamma$ and VBF $h/H \rightarrow \tau \tau$ reeinterpreted in MSSM

▶ VBF $qqh/H \rightarrow \tau \tau$

Nevts (30fb⁻¹) / 5GeV/c²

- tag forward jets, large $|\Delta \eta|$
- central jet veto
- EW/QCD $\rightarrow 2\tau$ dominates

 $\blacktriangleright h \to \gamma \gamma$

- tag γ pairs
- need good EM calorimetry
- small peak on huge QCD background

50

$${\cal A}/{\cal H}
ightarrow { ilde\chi}_2^0 { ilde\chi}_2^0
ightarrow 4\ell + E_T^{
m miss}$$

- Analysis
 - MSSM / mSUGRA points optimized for lepton BR

- Backgrounds and Event Selection
 - 4 leptons, opposite signs and flavours
 - *tī*: jet multiplicity
 - ZZ, Zbb: E_T^{miss} lower bound, dilepton masses
 - SUSY, E_T^{miss} upper bound, jet multiplicity
- Systematic Uncertainties
 - little experimental uncertainty
 - strongly model dependent

Charged Higgs Boson H^{\pm} Searches

Motivation

- predicted by two Higgs doublet models (e.g. MSSM)
- models with Higgs triplets (e.g. little Higgs)
- smoking gun evidence for physics beyond the SM

• Low Mass Case $m_{H^+} < m_t$

- production via $t \rightarrow H^+ b$
- decay via $H^+ \rightarrow \tau \nu$
- small tan β : $H^+ \rightarrow cs$ (ATLAS analysis in preparation)
- High Mass Case $m_{H^+} > m_t$
 - ▶ production via $gg \rightarrow tbH^+$ and $gb \rightarrow tH^+$
 - decay via $H^+ \rightarrow tb$

イロト イ団ト イヨト イヨト

Light Charged Higgs Boson $m_{H^+} < m_t$

- Process $t\bar{t} \rightarrow bH^+bW \rightarrow b\tau\nu bW$
 - $b\tau$ (had) νbW (had) (ATLAS)
 - $b\tau(\text{lep})\nu bW(\text{had})$ (ATLAS)
 - $b\tau$ (had) νbW (lep) (ATLAS/CMS)
 - (ATLAS dilepton analysis in preparation)

Selection and Reconstruction

- b-tagged jets
- τ -jets and/or leptons
- hadronic W
 - t reconstruction
- leptonic W
 - ▶ additional E_{τ}^{miss}
 - Iepton charge correlation with au
- hadronic τ
 - higher branching ratio
 - au trigger crucial if W decays hadronically
- leptonic τ
 - additional E_T^{miss} (relative to hadronic τ)
 - ▶ lepton to t angular correlation ≠ leptonic Ws from background

Heavy Charged Higgs Boson $m_{H^+} > m$

- Processes $gg \rightarrow tbH^+$ and $gb \rightarrow tH^+$
 - ▶ $t \rightarrow bW(\text{lep}), H^+ \rightarrow tb \rightarrow bW(\text{had})b$
 - $b\ell\nu btb \rightarrow b\ell\nu bbqqb$
 - $b\ell\nu tb \rightarrow b\ell\nu bqqb$
 - $t \rightarrow bW(had)$, $H^+ \rightarrow \tau(had)\nu$
 - $bqqb\tau(had)\nu$
 - $bqq\tau(had)\nu$
- Fully Hadronic Channel most sensitive
 - transverse mass of ${\it H}^+$ from MET and au
 - t reconstructed as for light charged Higgs Boson
- Backgrounds
 - $t\bar{t}+2b$ and $t\bar{t}+jets$ dominate
 - ► *W*+jets, single top, QCD multi jet
- Exploit Helicity Correlation
 - $W \rightarrow \tau \nu$ different from $H^+ \rightarrow \tau \nu$
 - high momenum charged track

ATLAS and CMS Expected Discovery Countours $(m_h \text{ max})$

- Light Charged Higgs Boson $m_{H^+} < m_t$
 - mostly covered at LHC
 - difficult in intermediate tan β range with standard model decays of H^+
 - H⁺ to SUSY particles might offer sensitivity
 - CMS: SUSY corrections sizable, lower sensitivity estimate
 - ATLAS: limited MC statistics
- Heavy Charged Higgs Boson $m_{H^+} > m_t$
 - \blacktriangleright difficult except for the highest tan β

<ロト < 回 > < 回 > < 回 > < 回 >

ATLAS and CMS Expected Discovery Countours $(m_h \text{ max})$

- Light Charged Higgs Boson $m_{H^+} < m_t$
 - mostly covered at LHC
 - difficult in intermediate tan β range with standard model decays of H^+
 - H⁺ to SUSY particles might offer sensitivity
 - CMS: SUSY corrections sizable, lower sensitivity estimate
 - ATLAS: limited MC statistics
- Heavy Charged Higgs Boson $m_{H^+} > m_t$
 - \blacktriangleright difficult except for the highest tan β

<ロト < 回 > < 回 > < 回 > < 回 >

Searches for Non-Supersymmetric Higgs Bosons Invisible Higgs Boson Searches

Invisible Higgs Bosons in Vector Boson Fusion (ATLAS)

- Higgs Bosons Might Decay Invisibly
 - R-parity conserving MSSM: LSP
 - R-parity violating MSSM: majorons
 - models with extra dimension: graviscalars
- Strategy look for E_T^{miss} and jets in VBF
 - ▶ more sensitive than associated production: $ZH, Z \rightarrow \ell \ell$
 - ϕ_{jj} shape well known theoretically

Backgrounds

- QCD jets (fake E_T^{miss})
- W+jets, $W \rightarrow \ell \nu$ (acceptance)
- Z+jets, $Z \rightarrow \ell \ell$ (acceptance)
- Z+jets, $Z \rightarrow \nu \nu$ (irreducible)
- non standard model backgrounds not considered (model dependent)

Trigger

- $E_T^{
 m miss}$ > 70GeV (pprox 98%)
- (forward) jet triggers

< 口 > < 同 > < 三 > < 三

Invisible Higgs Bosons in Vector Boson Fusion (ATLAS)

Event Selection

- E_T^{miss} cut crucial against QCD
- lepton veto vs. W and Z + jets
- VBF tagging jets, $\eta_1\eta_2 < 0$, $\Delta\eta > 4.4$
- central jet veto
- I = min [φ(E_T^{miss}) − φ(tagjets)] > 1rad vs. mismeasured QCD

Systematic Uncertainties

- underlying event (CJV): 49%
- jet energy scale / resolution: 10%
 - ▶ also affects E_T^{miss}
- ϕ_{jj} shape 10% th., 11.3% th. + exp
- Results and Conclusion
 - $\xi^2 = BR(h \rightarrow inv.) \frac{\sigma_{BSM}}{\sigma_{SM}}$
 - 30fb⁻¹: 95% exclusion up to 250GeV for SM-cross section

<ロト <回ト < 回ト < 回ト

Radions in 5D Randall-Sundrum Model (CMS)

∧•L √3.5+

3

2.5

2

Motivation

- provides solution for hierarchy problem
- Channels
 - $\Phi \rightarrow hh \rightarrow \tau \tau bb$ (< 960fb)
 - $\Phi \rightarrow hh \rightarrow \gamma \gamma bb$ (< 71fb) more sensitive

Analysis Strategy

- diphoton trigger
- $\gamma\gamma$ + jets: *b*-tagging
- excellent mass resolution: background from data

 $\blacktriangleright m_{\gamma\gamma}$ cut

More Beyond Standard Model Higgs Boson Searches

- ► Fermiophobic Higgs Boson: can reinterpret SM searches
 - \blacktriangleright associated WH to 3 leptons and $h \rightarrow \gamma \gamma$
- $\blacktriangleright A \to ZH \to \ell\ell bb$
 - ▶ promising for low tan β and $m_Z + m_h < m_a < 2m_t$
- Higgs Boson Production in SUSY Cascades
 - strongly dependent on SUSY point and parameters
- CP violating MSSM
 - promising in VBF, $bbh, h \rightarrow \mu\mu$
 - in maximally CP-violating scenario CPX only a small region is uncovered
- Doubly Charged Higgs Bosons
 - littlest Higgs model, left-right symmetric models
 - ▶ VBF $qqH^{++} \rightarrow WW$ double leptonic
- Generic Resonances in VBS
 - generic phenomenological approach to EWSB
 - can also model Higgs boson-like scalars

・ロン ・四 と ・ ヨ と ・ ヨ と …

Conclusion and Outlook

ATLAS and CMS are Prepared to Find MSSM Higgs Bosons

- if MSSM is realized at least one Higgs boson will be found
- discovery for some parameter points may need a lot of data
- large regions in parameter space can be excluded quickly

More Exotic Models are Also Tested

- other supersymmetric models
- Littlest Higgs model
- Randal-Sundrum models
- Invisible Higgs Bosons
- generic resonances in VBS and more ...
- The Experiments are Already Taking Data
 - cosmic muons help understand the running detectors
 - well prepared for collisions at the end of the year

イロト イ団ト イヨト イヨト

Appendix

2

▲白▶ ▲圖▶ ▲温≯ ▲温≯

Jan Schumacher (TU Dresden)

WIN09 25 / 23