

A search for neutrinoless double beta decay:

Latest results from the NEMO-3 experiment and Plans for SuperNEMO

Karol Lang The University of Texas at Austin

On behalf of the NEMO Collaboration

Outline:

- $\Box = 0\nu\beta\beta$ and $2\nu\beta\beta$ some practical factors
- □ The NEMO-3 experiment
- Latest results from NEMO-3
- SuperNEMO
- Summary and outlook

 $2\nu\beta\beta$ and $0\nu\beta\beta$

 α^*, β^* = linear combinations of α and β

Practical factors

NEMO-3	Q _{ββ} (MeV)	Natural abundance (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

(11) $\beta\beta$ emiters with $Q_{\beta\beta}$ > 2 MeV

Borrowed from:

F. T. Avignone, S. R. Elliott and J. Engel,

"Double Beta Decay, Majorana Neutrinos, and Neutrino Mass," Rev.\ Mod.\ Phys.\ {\bf 80}, 481 (2008) [arXiv:0708.1033 [nucl-ex]].

K. Lang (U of Texas at Austin): NEMO-3 and SuperNEMO (WIN'09)

- ♦ Natural radioactivity and cosmic rays dominate the source of backgrounds → need to go underground + lots of local shielding
- ²³⁸U and ²³²Th decay chains produce the most troubling gammas (highest energies):

3

NEMO-3 technique schematics

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

20 sectors

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators (PS + PTP + POPOP) coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall)

40 cm **wood** (top and

bottom)

(since March 2004: water + boron)

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators (PS + PTP + POPOP) **coupled to low radioactivity PMTs**

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm water (ext. wall) 40 cm wood (top and bottom)

(since March 2004: water + boron)

$\beta\beta$ decay isotopes NEMO-3

Laboratoire Souterrain de Modane (Frejus tunnel)

Laboratoire Souterrain de Modane

IN2P3

Built for Taup experiment (proton decay) in 1981-1982

Cathod rings Wire chamber

Calibration tube

scintillators

PMTs

$\beta\beta$ isotope foils —

K. Lang (U of Texas at Austin): NEMO-3 and SuperNEMO (WIN'09)

and have a start of the

During installation AUGUST 2001

Finished detector

$\beta\beta$ events selection in NEMO-3

Internal background (in addition to a potential 2νββ tail)
 (due to radio-impurities of the isotopic source foil)

(due to radio-impurities of the detector)

Signal and background signatures

R

Cadmium Foil(s) Activity and Hot Spots

Example: eγ control channel

150-Nd foil

Energy of the electron Number of events/0.05 MeV 00 00 00 00 00 00 Data (939 days) ²⁰⁷Bi ¹⁵²Eu ¹⁵⁴Eu ²⁰⁸TI Other internals Radon External 400 200 00^L 3 3.5 E_e[MeV] 0.5 1.5 2.5

Energy of the photon

Phase I (high Radon): Feb 2003 – Dec 2004 (389 days)

¹⁰⁰Mo: $T_{1/2}(\beta\beta 2\nu) = (7.11 \pm 0.02(stat) \pm 0.54(syst)) \cdot 10^{18} y$

Phys.Rev.Lett. 95, 182302 (2005)

 $\ll\beta\beta$ factory» – tool for precision tests

 $0\nu\beta\beta$ of ¹⁰⁰Mo

Data until the end of 2008

 $0\nu\beta\beta$ of ⁸²Se

Data until the end of 2008

 $T_{1/2} (0v\beta\beta) > 3.6 \times 10^{23} \text{ y} @ 90\% \text{ C.L.}$ $< m_v > < 0.89 - 1.61 \text{ eV}$

Results of 2vββ measurements Summer 2009

No evidence for non conservation of the lepton number

Ο Current limits on $0v\beta\beta$ (at 90% C.L.):

Isotope	Exposure	T _{1/2} (0vββ)	$\langle m_v \rangle$	NME
	(kg∙y)	[years]	[eV]	reference
¹⁰⁰ Mo	26.6	> 1.1 · 10 ²⁴	< 0.45 - 0.93	1-3
⁸² Se	3.6	> 3.6 · 10 ²³	< 0.9 - 1.6	1-3
			< 2.3	7
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.5 – 2.5	4,5
			< 4.0 - 6.8	6
¹³⁰ Te	1.4	> 9.8 · 10 ²²	< 1.6 - 3.1	2,3
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 – 19.5	2,3
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6	7

Nuclear Matrix Elements references:

[1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)

[2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315

[3] F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503

[4] V.A. Rodin et al. Nucl.Phys. A 793 (2007) 213

[5] V.A. Rodin et al. Nucl.Phys. A 766(2006) 107

[6] J.H.Hirsh et al. Nucl.Phys. A 582(1995) 124

[7] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

N 3 $2\nu\beta\beta$ and $0\nu\beta\beta$ of ¹⁰⁰Mo to excited states

V+A currents & Majoron

	V+A *	Majoron(s) emission (n=spectral index)**			
	T _{1/2} (0vββ)	n=1	n=2	n=3	n=7
	[years]				
¹⁰⁰ Mo	>5.7·10 ²³	>2.7·10 ²²	>1.7·10 ²²	>1.1022	>7·10 ¹⁹
	λ<1.4·10⁻ ⁶	g _{ee} <(0.4-1.8)·10			
⁸² Se	>2.4·10 ²³	>1.5·10 ²²	>6·10 ²¹	>3.1·10	>5·10 ²⁰
	λ <2 .·10⁻ ⁶	g _{ee} <(0.7-1.9)·10			

Phase I+Phase II data

** Phase I data, R. Arnold et al. Nucl. Phys. A765 (2006) 483

NEMO-3 → SuperNEMO challenges

F. T. Avignone, S. R. Elliott and J. Engel,
``Double Beta Decay, Majorana Neutrinos, and Neutrino Mass,''
Rev. Mod. Phys. 80, 481 (2008) [arXiv:0708.1033 [nucl-ex]].

NEMO-3

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.16 \times 10^{26} \, y}{n_{\sigma}} \left(\frac{\varepsilon a}{W}\right) \sqrt{\frac{Mt}{b\Delta E}}$$

 n_{σ} – number of std. dev. for a given C.L.

- *a* isotopic abundance
- ε detection efficiency
- W molecular weight of the source
- M total mass of the source (kg)
- t time of data collection (y)
- b background rate in counts (keV · kg · y)
- ΔE energy resolution (keV)

SuperNEMO

		•
¹⁰⁰ Mo	isotope	⁸² Se
7 kg	isotope mass M	100-200 kg
8 %	efficiency ε	~ 30 %
²⁰⁸ TI: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ^{208}Tl and ^{214}Bi in the $\beta\beta$ foil	²⁰⁸ Tl < 2 μBq/kg ²¹⁴ Bi < 10 μBq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2}(0v\beta\beta) > 1.4 \times 10^{24} y$ <m<sub>v> < 390 - 810 meV</m<sub>		$T_{1/2}(0\nu\beta\beta) > 2 \times 10^{26} \text{ y}$ $< m_{\nu} > < 40 - 100 \text{ meV}$

Bars design

Blocks design

ULISSE project

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

SuperNEMO: Calorimeter R&D

$\Delta E/E \sim 7.2$ % at 1 MeV (corrected)

8" Hamamatsu R5912-MOD Super-Bialkali 8 Dynodes

Similar to BC408

GEANT4 optical simulation

2m-long scintillator bars (a cheaper option)

SuperNEMO tracker R&D

Optimize length, wire material and diameter, read-out, gas mixture etc
 Several 1-cell and two 9-cell prototypes built and tested
 O0 cell prototype;

□ 90-cell prototype:

r – resolution z – resolution

0.7 mm 1.3 cm

90-cell prototype Manchester

- □ ~500,000 wires to be strung, crimped, terminated
- □ Wiring robot being developed in collaboration with Mullard Space Science Lab (UCL)

BiPo R&D (for measuring foil radio-purity)

NEMO-3 running (through 2010) and produces unique results \checkmark many best results in $0\nu\beta\beta$ and $2\nu\beta\beta$ ¹⁰⁰Mo (2009): $T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{24} \text{ y} (90\% \text{ CL}) < m_{\nu} > < (450 - 930) \text{ meV}$ ⁸²Se (2009): $T_{1/2}^{0\nu\beta\beta} > 3.6 \times 10^{23} \text{ y} (90\% \text{ CL}) < m_{\nu} > < (900 - 2300) \text{ meV}$ ✓ results for 5 other isotopes: ⁴⁸Ca, ⁹⁶Zr, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd ✓ results on transitions to excited states, V+A, Majorons, SSD vs HSD, ... Next: SuperNEMO □ ⁸²Se $T_{1/2}(0v) = (1-2) \times 10^{26} y$ (500 kg*y exposure) sensitivity $< m_{v} > \leq 40 - 140 \text{ meV}$ (NME uncertainty QRPA + SM) 2010 2011 2007 2012 2008 2009 2013 **NEMO-3** Running **R&D** SuperNEMO **Demonstration module** construction of 20 modules