

Search for Muon Neutrino Disappearance in a Short-Baseline Accelerator Neutrino Beam

Yasuhiro Nakajima (Kyoto Univ.), for the SciBooNE Collaboration September 15th, 2009 WIN 09

Contents

Introduction

- Neutrino Oscillations
- Experimental Setup
 - Beamline
 - Detectors : SciBooNE and MiniBooNE
- Oscillation Analysis

Introduction

Neutrino Oscillations

Search for Muon Neutrino $\frac{\text{SciBooNE}}{\text{Disappearance at high } \Delta m^2}$

- Search for exotic mode of neutrino oscillation
 - Sterile neutrino, etc..
- MiniBooNE's first result is based on the spectrum shape only analysis.
 - Limited by large flux and x-section uncertainties.
- A near detector can strongly constrain flux and x-section errors.

Y. Nakajima (Kyoto U.) WIN09

SciBooNE Detector Installation April, 2007

Experimental Setup

Fermilab Booster Neutrino Beamline

100 m

 High intensity Neutrino and Anti-Neutrino beam

- $E_v \sim 1 \text{ GeV}$
- Neutrino Fluxes are measured at 2 detectors: SciBooNE and MiniBooNE

• L ~ 500m <u>Sensitive to Oscillations at $\Delta m^2 \sim 1eV^2$ </u> $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [eV^2]L[km]}{E[GeV]} \right)$

Y. Nakajima (Kyoto U.) WIN09

SciBooNE

SciBooNE Detector

• SciBar:

- Full active scintillator tracker (~14000 strips)
- Neutrino Target
 - Fiducial volume: ~10 tons
 - Main component: CH
- Electron Catcher (EC)
 - "Spaghetti" type calorimeter
- Muon Range Detector (MRD)
 - Steel and scintillator sandwich
 - Measure muon momentum from its range

SciBooNE Data Taking

- Started beam data taking on July 2007
- Data taking completed in August 2008
- Stable data taking
- Tatal 2.52x10²⁰ POT for analysis (95% of delivered)
 - Neutrino: 0.99x10²⁰ POT
 - Anti-Neutrino: 1.53x10²⁰ POT

Analysis of full neutrino data set are presented today

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

ν

on target (x1E20)

Protons

V

Jul

Jun

Delivered For analysis

Date

 $\overline{\nu}$

MiniBooNE Detector

MiniBooNE Detector

Signal Region
Veto Region

Mineral oil Cherenkov detector

- Select v_{μ} by single muon and its decay-electron signal.
- Total mass: ~1k ton
- Main component: CH₂
- Taking beam data since 2002
 - 5.58 x 10²⁰ POT (neutrino mode)
 + SB-MB overlap
 - 2 detectors share the beam and

the target material (both carbon)

Most of the systematic error cancels

SciBooNE

MiniBooNE Detector

Oscillation Analysis

Analysis Overview

<u>2 Independent Analyses</u>

Step-by-step

SciBooNE Data

Spectrum fit

SciBooNE True E_v

Far/Near ratio

 $MiniBooNE \ True \ E_{\nu}$

MiniBooNE Rec. Ev Prediction

Oscillation Fit

MiniBooNE Rec. E_v Data

<u>Advantage</u>: Can see what physically happening and error size at each step

Simultaneous fit

SB + MB Rec. E_v Data

Oscillation Fit

SB + MB Rec. E_v Prediction

<u>Advantage</u>: Can include all correlation and minimize the systematic error

> This talk will focus on "Step-by-step" analysis

Y. Nakajima (Kyoto U.) WIN09

SciBooNE v_{μ} Selection

- Select events with muon track (Charged current inclusive sample)
- Muon selection
 - Muon-like energy deposit in SciBar
 - Require tracks stopped in the detectors
- Require momentum > 0.25 GeV (MC) True Ev distribution of each sample

SciBooNE

SciBooNE SciBooNE Spectrum Fitting (1)

 P_{μ} : Muon momentum reconstructed by its path-length θ_{μ} : Muon angle w.r.t. beam axis

- Fit P_{μ} vs. θ_{μ} distributions.
- Determine MC scale factor for each true E_v bins.

MC Templates (MRD-stopped)

10 20 30 40 50 60 70 80 90

SciBooNE Data Spectrum fit SciBooNE True E_v Far/Near ratio MiniBooNE True E_v MiniBooNE Rec. E_v Prediction Oscillation Fit MiniBooNE Rec. E_v Data

SciBooNE SciBooNE SciBooNE (2)

Apply E_v scale factor for the MC prediction.

P_{μ} and θ_{μ} distribution after

Y. Nakajima (Kyoto U.) WIN09

MiniBooNE Prediction

- Extrapolate measured spectrum from SciBooNE to MiniBooNE.
- Convert True $E_v \rightarrow \text{Rec. } E_v$
- Systematic Errors
 - SciBooNE spectrum measurement uncertainty
 - Beam flux model
 - Cross-section model
 - MiniBooNE detector response

MiniBooNE reconstructed E ν and its error expectation

Oscillation Sensitivity

 Sensitivity estimated by fitting simulated fakeexperiments.

SciBooNE

Improved from MiniBooNE

 only sensitivity especially
 at low-Δm² region, where
 absolute normalization is
 important.

• <u>Final data fit result will be</u> <u>released soon!</u>

Summary and Prospects

• Search for neutrino disappearance at $\Delta m^2 \sim 1 eV^2$

- SciBooNE-MiniBooNE joint analysis.
- Cover unexplored oscillation parameter region.
- Final data fit result will be released soon!
- Anti-neutrino analysis is also on-going.

Extra Slides

SciBooNE Collaboration

- Universitat Autonoma de Barcelona
- University of Cincinnati
- University of Colorado
- Columbia University
- Fermi National Accelerator Laboratory
- High Energy Accelerator Research Organization (KEK)
- Imperial College London*
- Indiana University
- Institute for Cosmic Ray Research
- Kyoto University*
- Los Alamos National Laboratory
- Louisiana State University
- Purdue University Calumet
- Università degli Studi di Roma and INFN-Roma
- Saint Mary's University of Minnesota
- Tokyo Institute of Technology
- Universidad de Valencia

~70 Physicist from 17 institutes, 5 countries

Event Selection (Timing)

- 2 μsec beam timing window.
 - Less than 0.5% cosmic background contamination.
- ~14K SciBar-stopped events.
- ~20K MRD-stopped events.
- ~4K MRD-penetrated events.

Reconstructed Interaction Vertices

SciBooNE

MRD matched muon (relatively normalized)

$MiniBooNE v_{\mu} Selection$

Selection of v_{μ} candidates: Tag single muon events and their decay electron Background is $CC\pi^+$ where the pion is absorbed in nucleus or detector

22