Hadronic Decay studies of τ lepton at B-factories

MyeongJae Lee (Seoul National Univ.) International workshop on Weak Interactions and Neutrinos, Sep.15, 2009

Belle & BaBar experiments

- Good vertexing
- Good PID
- Good photon detection, Eγ resolution
- Energy asymmetry
- High luminosity

Decay mode	σ (nb)
Ψ (4S) →BB	1.15
$e^+e^- \rightarrow \tau \tau$	0.919
e⁺e⁻→ff (f=udsc)	2.8
$e^+e^- \rightarrow \mu\mu$	1.15
Bhabha (Barrel)	44
γγ (Barrel)	2.4
2γ(Barrel, P _t >0.1GeV)	~15

σ(BB) ≈ σ(ττ) : Not just
 a B-factory but a
 τ-factory

10 years of B-factories Integrated luminosity [fb^{-1}] Total : ~ 1500 fb⁻¹ BaBar : total 557 fb -1 1500 Belle : total 946 fb -1 Belle + BaBar : total ~1500 fb⁻¹ 946 fb⁻¹ 1000 (Jul, 2009) BELLE 500 557 fb⁻¹ (Apr, 2008) 0 2000 2002 2004 2006 2008 2010 Year

1500fb⁻¹ ~ 1.4X10⁹ τ pair events!

MyeongJae Lee (SNU), "Hadronic tau decays", WIN09, Sep. 15, 2009.

Decay Mode	Experiment	Reference		Result
$(T^- \rightarrow K^- v)/(T^- \rightarrow e^- \overline{v} v)$	BaBar	arXiv:0811.1429 [hep-ex]		(0.03882 ± 0.00032 ± 0.00056)
			$ g_{\tau}/g_{\mu} = (0.9836 \pm 0.0087)$	
$T \rightarrow K^- \pi^0 v$	BaBar	Phys.Rev.D76:051104,20	007	$(0.416 \pm 0.003 \pm 0.018) \times 10^{-2}$
$T \rightarrow \overline{K}^0 \pi^- v$	BaBar	arXiv:0808.1121 [hep-ex]	1	$(0.840 \pm 0.004 \pm 0.023) \times 10^{-2}$
	Belle	Phys.Lett.B654:65-73,20	07	$(0.808 \pm 0.004 \pm 0.026) \times 10^{-2}$
$T^- \rightarrow K^- \pi^- \pi^+ v \text{ (excl. } K_S^0)$	BaBar	Phys.Rev.Lett.100:01180	01,2008	$(0.273 \pm 0.002 \pm 0.009) \times 10^{-2}$
	Belle	EPS2009		$(0.328 \pm 0.002 \pm 0.012) \times 10^{-2}$
$T^{-} \rightarrow K^{-} \pi^{-} K^{+} v$	BaBar	Phys.Rev.Lett.100:01180	01,2008	$(1.346 \pm 0.010 \pm 0.036) \times 10^{-3}$
	Belle	EPS2009		$(1.53 \pm 0.01 \pm 0.05) \times 10^{-3}$
$T \rightarrow K^- K^- K^+ v$	BaBar	Phys.Rev.Lett.100:01180	01,2008	(1.58 ± 0.13 ± 0.12) x 10 ⁻⁵
	Belle	EPS2009		$(2.62 \pm 0.23 \pm 0.22) \times 10^{-5}$
$T^{-} \rightarrow K^{-} \phi V$	BaBar	Phys.Rev.Lett.100:01180	01,2008	$(3.39 \pm 0.20 \pm 0.28) \times 10^{-5}$
	Belle	Phys.Lett.B643:5-10,200	6	$(4.05 \pm 0.25 \pm 0.26) \times 10^{-5}$
$T^- \rightarrow K^* K^- v$	Belle	arXiv:0808.1059 [hep-ex]	1	$(1.56 \pm 0.02 \pm 0.09) \times 10^{-3}$
$T^{-} \rightarrow K^{*} K^{-} \pi^{0} v$	Belle	arXiv:0808.1059 [hep-ex]	1	$(2.39 \pm 0.46 \pm 0.26) \times 10^{-5}$
$T^{-} \rightarrow K^{-} \eta \chi$	Belle	Phys.Lett.B672:209-218,	2009	(1.58 ± 0.05 ± 0.09) x 10 ⁻⁴
$T \rightarrow K^{-} \pi^{0}$	Bel ê 🕇 🔁		2 2 2 -	
$T \rightarrow K_S^0 T T T_V$	Bene	Phys Lett D672203-28	2009	$(4.4 \pm 0.7 \pm 0.2) \times 10^{-5}$
T → K* η v	Belle	Phys.Lett.B672:209-218,	2009	$(1.34 \pm 0.12 \pm 0.09) \times 10^{-4}$
				(Top of the Page)
Decay Mode				Result
$(T^- \rightarrow \pi^- V)/(T^- \rightarrow e^- V V)$	Babar	ITXIV.0811.1429 [nep-ex]	(0.5943 E)	-0014 ± 0.0057
			$ g_{\tau}/g_{\mu} =$	(0.9859 ± 0.0057)
$T \rightarrow \Pi^{-} \Pi^{0} V$		Phys.R 4v.D78:07 2001 2008	252412	$0^{1} \pm 0.39$ X 10^{-2}
			1, U = 5 2	δ ± 1.5 (exp) ± 2.6 (BR) ± 2.5 (isospin
$T \rightarrow \pi^- \pi^- \pi^+ v$ (excl. K_S^{0})	BaBar	Phys.Rev.Lett.160:011801,2008	(8.83 ± 0.0	1 ± 0.13) x 10 ⁻²
	Belle	PS2009	(8.42 ± 0.0	0 ± 0.24) x 10 ⁻²
τ ⁻ → π ⁻ π ⁰ η ν	Belle	Phys.Lett.B672:209-,2009	(1.35 ± 0.0	3 ± 0.07) x 10 ⁻³
T → π⁻ ทุ v (Second Class Current)	Belle	<u>PS2009</u>	(4.4 ± 1.6 ±	± 0.8) x 10 ⁻⁵
		J [< 7.3 x 10 ⁻⁴	⁵ @ 90% C.L.
T ⁻ → f ₁ (1285) π ⁻ ν	BaBar	Phys.Rev.D77:112002,2008	(3.19 ± 0.1	$8 \pm 0.16 \pm 0.99$) x 10 ⁻⁴
$T^- \rightarrow f_1(1285) \pi^- v \rightarrow 2\pi^- \pi^+ \eta v$	BaBar F	Phys.Rev.D77:112002,2008	(1.11 ± 0.0	6 ± 0.05) x 10 ⁻⁴
τ ⁻ → 2π ⁻ π ⁺ η ν	BaBar	Phys.Rev.D77:112002,2008	(1.60 ± 0.0	5 ± 0.11) x 10 ⁻⁴
τ [¯] → π [¯] η' ν (Second Class Current)	Belle	PS2009	(-0.47 +3.9	7 _{-3.85} ± 0.26) x 10 ⁻⁶
][][< 6.1 x 10 ⁻⁶	⁶ @ 90% C.L.
τ [⁻] → π⁻ η' v (Second Class Current)	BaBar	Phys.Rev.D77:112002,2008	< 7.2 x 10 ⁻¹	⁶ @ 90% C.L.
τ → π ω ν (Second Class Current)	BaBar	http://www.slac.stanf	ord.edu	/xorg/hfag/tau/index.html
$T^- \rightarrow \Pi^- \Phi V$	BaBar	Phys.Rev.Lett.100:011801,2008	(3.42 ± 0.5	5 ± 0.25) x 10 ⁻⁵

Hadronic decays of tau lepton

The only lepton which can decay to hadrons

- □ Rather large mass (1.78GeV)
- $\hfill\square$ Clean initial state single τ pair decays decide the kinematics
- Test of CVC and evaluation of a_{μ} from spectral function.
- Measurements of important physics quantities : V_{us}, m_s, α_s
- Look for leptonic CP violation (NP)

Have been waiting for enough statistics from B-factories (especially, to measure strangeness decays)

Hadronic τ decay programs

- Non-strange final state
 - $\Box \quad \tau \rightarrow \eta \pi \nu_{\tau}, \ \tau \rightarrow \eta' \pi \nu_{\tau} : \text{Second Class Current}$
 - □ $\tau \rightarrow \pi \pi^0 v_{\tau}$: Test of CVC and (g-2)_µ (PRD78:0701006,2008)
 - $\Box \tau \rightarrow \eta \pi \pi^0 v_{\tau}$: Wess-Zumino anomaly
- Strange final state
 - \square $\tau{\rightarrow}K\pi\nu_{\tau}$, $\tau{\rightarrow}K\eta X\nu_{\tau}$
 - □ 3-prong : $\tau \rightarrow h^{\pm} h^{+} h^{-} v_{\tau}$ (h = π ,K)
 - V_{us} measurement
 - $\Box V_{us} using \Gamma(\tau \rightarrow K_{\nu_{\tau}})/\Gamma(\tau \rightarrow \pi_{\nu_{\tau}})$
 - Strange spectral function and V_{us}, m_s measurements
- Other researches
 - □ 5-prongs, 7-prongs....
 - □ τ mass measurements (via $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$)
 - □ Search for CP violation in the charged lepton....

* "Blue" will be presented

In this talk

Analysis of hadronic τ decay event

Features of τ pair decays : Low mult., Large P_T, missing E_{tot} and P_{tot}

Main backgrounds	Discrimination
Bhabha, dimuon ($e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$)	Reconstructed total energy, momentum, multiplicity
Continuum (e⁺e⁻→qq, q=udscb)	Event topology, thrust, invariant mass, multiplicity
Two-photon	Small transverse momentum, M _{miss} , P _{miss} recon.
Beam background	Quality of decay vertex
Other tau decays	Efficient reconstruction of signal mode

- Typically, require pure leptonic decay in the tagging side
- In many cases, π/K separation is very important
- Estimate the tau decay background from the MC, or the sideband of resonances

$\tau \rightarrow \eta \pi v_{\tau}$: Second Class Current

- 1st Class Current : $PG(-1)^{J} = +1$ □ $J^{PG} = 0^{-}(\pi), 1^{-+}(\rho), 1^{+-}(a_{1}),...$
- 2^{nd} Class Current : $PG(-1)^{J} = -1$
 - $\Box \ J^{PG} = 0^{+-}(a_0), \ 1^{++}(b_1), \dots$
 - S.Weinberg (PR112:1375 (1958))
 - □ Should be suppressed by isospin symmetry in SM \propto (m_d m_u)
 - □ $J^{PG}(\tau \rightarrow \eta \pi \nu_{\tau}) = 0^{+-}$, $B(\tau \rightarrow \eta \pi \nu_{\tau}) = 10^{-6} \sim 10^{-5}$
 - \square Main background : All τ decays containing η

All measurements	Mode	BF (x10 ⁻⁴)	Mode	BF (x10-5, @90%)
by Belle Collab.	$π^- π^0$ ην	13.5± 0.3± 0.7	Κ⁻Κ⁰ην	<0.45
(PLB672,209(2009)	Κ⁻ην	1.58± 0.05± 0.09	π⁻K ⁰ ₅ην	<2.5
	K ⁻ π⁰ην	$0.46 \pm 0.11 \pm 0.04$	Κ⁻ηην	<0.3
	π⁻K ⁰ ₅ην	$0.44 \pm 0.07 \pm 0.03$	π⁻ηην	<0.74

MyeongJae Lee (SNU), "Hadronic tau decays", WIN09, Sep. 15, 2009.

BHT

Experiments	Β(τ→ηπν _τ), 10 ⁻⁴ @95% C.L.
MARK3	<250 (@90%)
CLEO, 1987	<180
ARGUS, 1988	<90
CLEO, 1992	<3.4
ALEPH, 1997	<6.2
CLEO, 1996	<1.4 (PDG avg.)

Analysis of $\tau \rightarrow \eta \pi v_{\tau} (\eta \rightarrow 3\pi)$

• With standard event selection + M(4π)<1.2GeV ...

 Other SCC study : τ→η′(958)πν_τ
 BF < 6.1x10⁻⁶ @90% C.L. (Belle)
 BF < 7.2x10⁻⁶ @90% C.L. (BaBar) (Phys.Rev.D77:112002,2008)

Strange final state decay of $\boldsymbol{\tau}$

- B-factory detectors have a good π/K separation
 - Useful to discriminate Cabibbo-suppressed decay
- Rather small BR for strangeness decays
 - Need large statistics for studying suppressed decays
- For V_{us} measurement
 - $\hfill\square$ Inclusive measurements of $\tau{\rightarrow}s$ decays
 - Strange spectral function and simultaneous fit on V_{us} and m_s : need enough statistics and measurements
 - \Box τ decays are the most clean environment to measure V_{us}.
 - Uncertainties are dominated by experimental error.

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} v_{u} & v_{u} & v_{u} \\ v_{u} & v_{u} & v_{u} \\ v_{u} & v_{u} & v_{u} \end{pmatrix}$

• Estimate from the unitarity condition : $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \Rightarrow |V_{us}| = 0.2255 \pm 0.0010$

• From K_{l3} decays • V_{l^+} • $V_{us}| = 0.2247 \pm 0.0012$ • $V_{us}| = 0.2261 \pm 0.0015$

$$V_{us} \text{ measurement from } \tau \text{ decay}$$

$$R_{\tau} = \underbrace{\frac{\Gamma(\tau^{-} \rightarrow (hadrons)^{-} v_{\tau})}{\Gamma(\tau^{-} \rightarrow e^{-} \overline{v_{e}} v_{\tau})}}_{\Gamma(\tau^{-} \rightarrow e^{-} \overline{v_{e}} v_{\tau})} = R_{\tau,non-strange} + R_{\tau,strange}$$

$$Measured from the branching fraction and invariant mass spectra
$$|V_{us}|^{2} = \frac{R^{W}_{\tau,strange}}{R^{W}_{\tau,non-strange}/|V_{ud}|^{2} - \delta R^{W}_{\tau}}$$

$$|V_{ud}| \text{ is well measured from super allowed } 0^{+} \rightarrow 0^{+} \text{ beta decay}$$

$$\delta R^{W}_{\tau} \text{ is determined from Finite Energy Sum Rule, and is relatively small } (\delta R^{W}_{\tau} \sim 0.06 \times R^{W}_{\tau,non-strange}/|V_{ud}|^{2} \pm 10\%)$$

$$R_{\tau} = \frac{1 - BF(\tau \rightarrow e_{VV_{\tau}}) - BF(\tau \rightarrow \mu_{VV_{\tau}})}{BF(\tau \rightarrow e_{VV_{\tau}})} = R_{\tau,non-strange} + R_{\tau,strange}$$$$

: inclusive measurement of strange decays is required.

τ decays with η : τ \rightarrow Kην_τ, τ \rightarrow Kπ⁰ην_τ $\tau \rightarrow K \pi^0 \eta \nu_{\tau}$ $\tau \rightarrow K \eta \nu_{\tau}$ 200 60 200 800 40 BELLE 100 400 20 Belle, PLB 672:209 (2009) $\gamma^2/n.d.f.=0.824$ χ²/n.d.f.=0.988 0 0.6 0.7 0. 0.4 0.4 0.5 0.6 0.5 $M_{\gamma\gamma}$ (GeV/c²) $M_{\gamma\gamma}$ (GeV/c²) $| \tau \rightarrow K \pi^0 \eta \nu_\tau (\eta \rightarrow \gamma \gamma, \eta \rightarrow 3\pi)$ $\tau \rightarrow K\eta \nu_{\tau} (\eta \rightarrow \gamma \gamma, \eta \rightarrow 3\pi)$ 450M (490 fb⁻¹) $N_{\tau\tau}$ $(1.58 \pm 0.05 \pm 0.09) \times 10^{-4}$ BF $(0.46 \pm 0.11 \pm 0.04) \times 10^{-4}$ BF (CLEO, 1996) $(2.6 \pm 0.5 \pm 0.5) \times 10^{-4}$ $(1.77 \pm 0.56 \pm 0.71) \times 10^{-4}$

- Four decay modes are correlated due to the particle misidentification, that one decay mode contributes to the BG of the other decay mode
- Large differences btw BFs make this cross-feed effect significant. $N_{i}^{true} = \varepsilon^{-1}_{ij} \left(N_{j}^{rec} - N_{j}^{OtherBG} \right)$

 N_i^{true} : Number of true signal events for i-th mode N_i^{rec} : Number of reconstructed events for i-th mode $N_i^{OtherBG}$: Number of estimated backgrounds for i-th mode from non-3prong decay

 $\boldsymbol{\epsilon}$: efficiency migration matrix

Efficiency migration matrix ϵ (%)

rec true	τ→πππν	τ→Κππν	τ→ΚΚπν	$\tau \rightarrow KKKV$
τ→πππν	23.0	7.6	2.3	0.73
τ→Κππν	1.3	17.2	4.8	2.3
τ→ΚΚπν	4.1 × 10 ⁻²	0.47	12.9	6.0
$\tau \rightarrow KKKv$	5.0 ×10 ⁻⁴	1.4 ×10 ⁻²	0.28	9.4

Branching fraction of $\tau^- \rightarrow h^- h^+ h^- v_{\tau}$

BELLE		Branching ratio	N ^{rec}	N ^{other} /N ^{rec}
τ-→π⁻π	$^{+}\pi^{-}\nu_{\tau}$	(8.42± 0.01(st.) ^{+0.26} -0.25(sy.))× 10 ⁻²	8.86x10 ⁶	10.6%
τ-→K ⁻ π	$t^+\pi^-\nu_{\tau}$	$(3.28 \pm 0.01(st.)^{+0.16}_{-0.16}(sy.)) \times 10^{-3}$	7.94x10 ⁵	12.2%
τ−→K⁻K	$X^+\pi^-\nu_{\tau}$	$(1.53 \pm 0.01(st.)^{+0.05}_{-0.05}(sy.)) \times 10^{-3}$	1.08x10 ⁵	6.70%
τ−→K⁻K	Κ+ Κ -ν _τ	(2.62±0.15(st.) ^{+0.17} -0.17(sy.))× 10 ⁻⁵	3.16x10 ³	5.45%

$N_{\tau\tau} = 613M$, Belle, Preliminary (TAU08 and EPS09)

	Branching ratio	N ^{rec}
$\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$	(8.83±0.01±0.13)× 10 ⁻²	1.60x10 ⁶
$\tau \rightarrow K^{-}\pi^{+}\pi^{-}\nu_{\tau}$	(2.73±0.02±0.09)× 10 ⁻³	6.96x10⁴
$\tau \rightarrow K K^+ \pi^- v_{\tau}$	(1.35±0.01±0.04)× 10 ⁻³	1.82x10 ⁴
$\tau \rightarrow K^-K^+K^-\nu_{\tau}$	(1.58± 0.13± 0.12)× 10 ⁻⁵	2.75x10 ²

Nττ = 314M, **BaBar**, **PRL100:011801**, 2008

Mass spectra of $\tau^- \rightarrow h^- h^+ h^- v_{\tau}$

Motivation

- : to contribute to the evaluation of strange spectral function
- From the unfolding analysis
 - Taking into account the smearing effect
 - □ Also the feed-down from other modes simultaneously considered ₂

Mass spectra of $\tau^- \rightarrow h^- h^+ h^- v_{\tau}$

MyeongJae Lee (SNU), "Hadronic tau decays", WIN09, Sep. 15, 2009.

Black point : unfolded spectra + stat. uncert. Gray band : syst. uncert. Red line : MC (TAUOLA) expectations

(normalized to the unfolded dist.)

- First unfolded spectrum for $K\pi\pi$, $KK\pi$, KKK decays Clear differences with
- theoretical models.
 - Incorrect resonance properties?
 - Incorrect mixing parameter
 - New resonances?
 - Non-resonant decays? p.20

(Semi-)Final V_{us} estimation (BaBar)

 Using the updated BF measurements and PDG avg.

<u>∼3</u>σ differences with

unitarity!

Mass spectra are not used

Independent measurement on Vus

$$\frac{\mathcal{B}(\tau \to K\nu)}{\mathcal{B}(\tau \to \pi\nu)} = \frac{f_K^2}{f_\pi^2} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{(1 - m_K^2/m_\tau^2)^2}{(1 - m_\pi^2/m_\tau^2)^2}$$

• $f_{K}/f_{\pi} = 1.189 \pm 0.007$ (Lattice QCD)

- Small (~0.03%) theoretical uncertainty can be ignored.
- Use $|V_{ud}| = 0.97408 \pm 0.00026$ from superallowed $0^+ \rightarrow 0^+$ beta decay

An independent study has been done by BaBar

Updated result on V_{us}

Summary and conclusion

- B-factory = τ -factory
- Many measurements have been done and are ongoing, specially in hadronic decays of τ
- Recent progress :
 - Second Class Current
 - Can not find any positive signal SM is still very healthy
 - $\hfill\square\hfill V_{us}$ measurement through inclusive measurements on the strange decay of τ
 - Had been an important issue for a few years recently.
 - May be due to the lack of measurements on the strange decay of tau – need more measurements
 - We need simultaneous measurement with m_s need more studies and (if possible) more statistics.

backups

Hadronic contribution a_{had}

Isospin-breaking corrections

$a_{\mu}^{2\pi}$: 2π contribution to a_{μ}

Experiment	$a_{\mu}^{\text{had,LO}}[\pi\pi,\tau] (10^{-10})$		
	$2m_{\pi\pm} - 0.36 \mathrm{GeV}$	$0.36-1.8{ m GeV}$	
ALEPH	$9.46 \pm 0.33_{exp} \pm 0.05_{\mathcal{B}} \pm 0.07_{IB}$	$499.19 \pm 5.20_{\rm exp} \pm 2.70_{\mathcal{B}} \pm 1.54_{\rm IB}$	
CLEO	$9.65 \pm 0.42_{exp} \pm 0.17_B \pm 0.07_{IB}$	$504.51 \pm 5.36_{exp} \pm 8.77_{\mathcal{B}} \pm 1.54_{IB}$	
OPAL	$11.31 \pm 0.76_{exp} \pm 0.15_{\mathcal{B}} \pm 0.07_{IB}$	$515.56 \pm 9.98_{exp} \pm 6.95_{\mathcal{B}} \pm 1.54_{IB}$	
Belle	$9.74 \pm 0.28_{exp} \pm 0.15_{\mathcal{B}} \pm 0.07_{IB}$	$503.95 \pm 1.90_{exp} \pm 7.84_{\mathcal{B}} \pm 1.54_{IB}$	
Combined	$9.76 \pm 0.14_{exp} \pm 0.04_{\mathcal{B}} \pm 0.07_{IB}$	$505.46 \pm 1.97_{exp} \pm 2.19_{\mathcal{B}} \pm 1.54_{IB}$	

Integrated from 2π threshold to 1.8GeV

Smallest experimental error for Belle !

τ :
$$a_{\mu}^{\pi\pi} = (514.1 \pm 3.2) \times 10^{-10}$$

e⁺e⁻(CMD,SND,KLOE) $a_{\mu}^{\pi\pi} = (503.5 \pm 3.5) \times 10^{-10}$

There is a difference btw τ and e^+e^-

2009/09/03

HS09

