

Top quark measurements at hadron machines

Sandra Leone
(INFN Pisa)
for the CDF and DØ Collaborations

Outline

- The Tevatron & the experiments
- Exploring top quark physics at the Tevatron:
 - ✓ Pair production cross section
 - ✓ Single top production
 - √Top mass measurements
 - ✓ Study of Top properties
- ...while waiting for the LHC startup
- Summary and conclusion

Tevatron Performances

Run II: √s = 1.96 TeV

Performances have kept improving since the start of Run II.

Accelerator complex breaking records all the time: Peak Luminosity record $\sim 3.6\cdot 10^{32}~\text{cm}^{-2}~\text{s}^{-1}$ Weekly integrated luminosity record 73 pb⁻¹

Integrated Luminosity

delivered: ~ 6.9 fb-1

Detectors running stably since Feb. '02

Data taking efficiency L(recorded)/L(delivered) commonly > 85% All results shown in the following based on datasets up to ~4.5 fb⁻¹

Tevatron Experiments

- \bullet Two general purpose detectors, CDF & DØ $_{\rm f}$ capable of many different physics measurements
- Large international collaborations, 600+ members each

Why study the Top Quark?

- Top quark discovered in 1995 at Tevatron
- It is a very special particle:
 - ⇒ Heavier than all known particles
 - \Rightarrow Decays before hadronizing: Γ_{top} =1.5 GeV > Λ QCD
- Since then, many top studies performed to answer the question: is what we call "top quark" adequately described by the Standard Model?
- Still many open questions:
 - \Rightarrow Why is top so heavy?
 - ⇒ Is top related to the EWSB mechanism?
 - \Rightarrow Is it the SM top?

Top Quark Production at Tevatron

QCD pair production

$$\sigma_{NNLO}$$
 = 7.4 +0.5 _{-0.7} pb (for m_{Top}= 172.5 GeV)
JHEP 0809, 127 (2008)

EWK single-top production

- \gt s-channel: σ_{NLO} = 0.9 pb
- t-channel: σ_{NLO} = 2.0 pb (Both for m_{Top}= 175 GeV) PRD 66, 054024 (2002)

■ σ smaller than top pair production, but \rightarrow allows direct access to V_{tb} CKM matrix element: cross section $\propto |Vtb|^2$

Top quark production at LHC

- Rare at Tevatron: One top pair per 10 billion inelastic collisions
- LHC @ 14TeV: σ(tt) ~ 850 pb
 (~10% qqbar, ~90% gg)

(x100 Tevatron) @ 14 TeV

- background ~ x10 Tevatron
- σ(tt) @ 10 TeV ~ 1/2 σ @ 14 TeV
 - ✓ Even in 100pb⁻¹ @10 TeV O(50K) ttbar pairs
- LHC = "Top Factory"

Top Quark Decay

$t = V_{tb} V_{tb} V_{b}$

SM predicts BR($t \rightarrow Wb$) $\approx 100\%$

Always b jets are present Decay lifetime Lxy Primary vertex Prompt tracks

For ttbar pairs:

Event topology determined by the decay modes of the 2 W's in final state.

Dilepton (ee, μμ, eμ)

$$\Rightarrow$$
BR = 5%, 2 high-P_T leptons + 2 b-
jets + large missing-E_T

■Lepton (e or μ) + jets

$$\Rightarrow$$
BR = 30%, single lepton + 4 jets (2 from b's) + missing- E_T

•All Hadronic:

$$\Rightarrow$$
BR = 44%, six jets, no missing-ET

• τ had +X

Top pair production: Dilepton Channel

High purity sample, good test of signal model

Control Signal region

CDF (4.5 fb⁻¹, m_t = 172.5 GeV), b-tagged, σ_{tt} (dil)=7.3 0.7(stat) 0.4(syst) 0.4(lum)pb

100

150

transverse missing energy, GeV

50

CDF (4.5 fb⁻¹, m_t= 172.5 GeV), pre-tagged, σ_{tt} (dil)=6.6 0.6(stat) 0.4(syst) 0.4(lum) pb

CDF Conf. Note 9890

200

250

Top pair production: Lepton +Jets

B-tagged sample, counting events

Pre-tagged sample, NN discriminant

- Luminosity is the largest uncertainty in both measurements (6%)
 - Reduce by normalizing to the measured Z cross section
 - Measure R and multiply by Z cross section from theory: $\sigma_{tt} = R \bullet \sigma_{Z}^{theory}$

CDF (4.3 fb⁻¹,m_t= 172.5 GeV), b-tagged: σ_{tt} =7.1 0.3(stat) 0.6(syst) 0.1(norm)pb

CDF (4.6 fb⁻¹,m_t= 172.5 GeV), pre-tagged σ_{tt} =7.6 0.4(stat) 0.3(syst) 0.1(norm) pb

Top pair production: All Hadronic

Measurement in background dominated sample: background is hard to model:

- Poorly known cross sections
- Data driven background model

CDF (2.9 fb⁻¹, m_t = 172.5 GeV):

 σ_{tt} (had)=7.2 0.5(stat) 1.5(syst) 0.4(lum)pb

t-tbar + jet Cross Section

- First σ measurement of t-tbar associated with an additional hard jet
- Important test of perturbative QCD
- Use b-tagged events in lepton + jets channel.
- Data-driven approach is used to predict the background content
- Standard model prediction $\sigma_{tt+j} = 1.79^{+0.16}_{-0.31}$ pb (arXiv:0810.0452v2)

Summer 2009

CDF (4.1 fb⁻¹, m_t = 172.5 GeV):

 $\sigma_{tt}(tt+j)=1.6 \ 0.2(stat) \ 0.5(syst) pb$

Measurements of ottbar

- Experimental uncertainty: $\Delta \sigma / \sigma \sim 6.5\%$
- Dominant exp. uncertainties: b-tag accept.,
 W+bjet background
- σ is measured in all final states: first step of any analysis studying the top quark properties.
- Tevatron combination underway

Summer 2009

Consistent across channels, methods, CDF/DO

$$\sigma_{tt} = \frac{N_{Data} - N_{Background}}{Acc \int L dt}$$

σ_{ttbar} measurement at LHC

Keep it as simple as possible on "day 1"

'Rediscover' top quark with ~ 10 pb-1@10TeV

100-200 pb-1 @ 10 TeV would be enough to

- ■Measure σ (ttbar) to better than 20%
- Determine the light jet energy scale to5%
- ■Determine the b-tagging efficiency

CMS: dilepton channel, no b-tagging, @10TeV, 10 pb^{-1} : $\Delta \sigma / \sigma \sim 20\%$

ATLAS: Expect $\Delta\sigma/\sigma \sim 17\%$ for single lepton ch, no btagging, 100 pb⁻¹ @14TeV

Single Top Production

s: 1 high- P_T lepton + 2 b-jets + missing-ET t: 1 high- P_T lepton + 1 b-jet + 1 other jet + missing-E

Single top hidden behind large backgrounds with large uncertainties

- →Makes counting experiment impossible!
- os-channel single top has the same final state as WH→lvbb
 - →benchmark for WH Higgs search!

Top-pair has better s/b and very distinct final state:

- → Counting experiment after b-quark tagging 'fairly easy'
- Single top requires more sophisticated techniques: no single variable provides significant signal-background separation
- ⇒ Perform multivariate analysis
- take advantage of small signal-background separation in many variables

Single Top Observation

CDF and DO both report >50 observation March 2009

The various MV methods give consistent results

PRL 103, 092001 PRL 103, 092002 (2009)

Single Top combination and direct V_{th}

CDF and DO combined their results using a Bayesian approach

$$\sigma_{t}$$
 =2.76 +0.58 _{-0.47} (stat+syst) pb

$$\sigma_{\text{single top}} \sim \propto |V_{\text{tb}}|^2$$

Assume:

- 1) $|V_{ts}|$, $|V_{td}| \ll |V_{tb}|$
- 2) Pure V-A coupling

Best direct measurement of V_{tb}:

Tevatron (3.2 fb⁻¹):

 $|V_{tb}|=0.91$ 0.08 (stat+syst)

Using PRD66 054024, 2002

Single Top Channels

 Extract t-channel and s-channel contribution to single top signal Summer 2009

 New physics scenario can affect single top channels differently.

D0 (2.3 fb⁻¹): σ_t (t-channel)=3.14^{+0.94}_{-0.81}(stat+syst)pb

Fermilab-Pub-09/372-E

Single top @ LHC

- Single top production will include associated production. At 14TeV:
 - \Rightarrow s-channel ~ 11 pb
 - \Rightarrow t-channel ~ 247 pb
 - \Rightarrow associated Wt ~56 pb PRD 63 034012 (2001) V
- t-channel most sensitive one
- Requires b-tagging + MVA
- Precision measurements of properties of top in electroweak produced single top will be possible

ATLAS with 1 fb⁻¹@14TeV: $\rightarrow \Delta |V_{tb}|/|V_{tb}| = 12\%$

Top quark mass

- M_{top} is a fundamental parameter of the Standard Model
- Since M_{top} is large, quantum loops $\frac{5}{20}_{80.4}$ involving top quarks are important to include when calculating precision observables (e.g. $sin\theta_W^2$, R_b , M_W , ...) 80.3-

 Within SM, particularly important to help constrain M_H

Top Quark Mass Measurements

Constraints

iet

Challenge is:

- Properly associate measured objects to initial state quarks and leptons (including neutrino)
- Extract best possible four-vector for each (jet energy scale is crucial!)
- The mass of the jet pair from $W \rightarrow jj$ ('in situ') is used to obtain an internal constraint to the jet energy scale(JES).
- Many Methods exist, most precise top mass from <u>Matrix Element in ℓ+jets</u>:

 - ⇒ Use four-vectors of reconstructed objects ⇒ Calculate a probability per event to be signal or background as a function of the top mass ⇒Product of event probabilities used to extract the most likely mass

Top mass: most precise single result

Matrix Element Technique in Lepton+Jets channel:

D0 (3.6 fb⁻¹):

 m_{t} = 173.7 0.8(stat)0.8(JES) 1.4(syst) GeV

CDF (4.3 fb⁻¹):

m_t=172.6 0.9(stat) 0.7(JES) 1.1(syst) GeV

DO note 5877-CONF

Tevatron top mass measurements

Consistent across channels and methods

$$M_{\star}^{\text{world}} = 173.1 \pm 0.6 \pm 1.1 \,\text{GeV/c}^2$$

ArXiv:0903.0885

- $\Delta M_{top}(total) = 1.3 \ GeV/c^2 \ \Delta M/M \sim 0.75 \%$
- •Have surpassed Run II goal by a factor of >2
- Some of the systematic uncertainties limited by statistics of calibration control samples
- Ongoing work on improving systematics
- With full Run II data set could reach a total uncertainty of ΔM_{top} ~1 GeV/c²

LHC: Predictions for 1 fb⁻¹ @14TeV: ΔM_{top} =1 to 3,5 GeV if JES 1-5% (ATLAS)

W Helicity in top decay

W helicity in top decays is fixed by M_{top} , M_W , and V-A structure of the tWb vertex. It is reflected in kinematics of W decay products.

W helicity states:

In Standard Model:

left-handed fraction: f ~30%

longitudinal fraction: f₀ ~70%

right-handed fraction: f₊

suppressed: ~0.036%

⇒ Measure angular distribution of charged lepton wrt. top in W rest frame: $\cos\theta^*$

W Helicity in Top Decay

 F_0 and F_+ are simultaneously fitted

CDF: combination of two cos θ^* analyses with 1.9fb⁻¹:

$$F_0 = 0.66 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$$

$$F_{+} = -0.03 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

PLB 674 (2009) 160-167

DØ uses lepton + jets and dilepton events with up to 2.7fb⁻¹

PRL 100 (2008) 062004

$$F_0$$
 = 0.49 \pm 0.11 (stat) \pm 0.09 (syst)

$$F_{+} = 0.11 \pm 0.06 \text{ (stat)} \pm 0.05 \text{ (syst)}$$

Results consistent with the Standard Model

Generic W-t-b Coupling

- Constrain form factors for anomalous tWb coupling
 - ⇒ Combine information from single top production and W helicity measurement in ttbar decay

$$L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \overline{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2} M_{W}} \partial_{\nu} W_{\mu}^{-} \overline{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t$$

Standard Model predicts: $f_1^L = 1$, $f_2^L = f_1^R = f_2^R = 0$

$$f_1^L = 1, \quad f_2^L = f_1^R = f_2^R = 0$$

⇒ Use all top samples to perform a general analysis of the vertex

Consistent with Standard Model

for
$$|f_1^L|^2 = 1$$
: $|f_1^R|^2 < 0.72$, $|f_2^L|^2 < 0.19$, $|f_2^R|^2 < 0.20$ @ 95% CL

DO Note 5838-CONF

Top anti-Top Spin Correlations

- Top spins are correlated only if top lifetime is short enough
- Information on the spin carried by the decay products

First results from Run II (dilepton channel)

SM predicts κ =0.78

NPB690, 81 (2004)

Agreement with SM within $2 \sigma (D0)$,

1 σ (CDF)

CDF (2.8 fb⁻¹):

D0 (4 fb^{-1}) :

K=-0.17 + 0.64

κ=0.32 +0.55 _{-0.78}

Off-diagonal axis

Beam axis

DO Note 5838-CONF CDF Conf. Note 9824

Top anti-Top Mass Difference

- Mass difference would imply CPT-violation
- First CPT measurement in the quark sector ('bare quark')
- Measured in lepton + jets events (ME technique) releasing constraint on $M_{ton} = M_{antitop}$

D0 (1 fb⁻¹):

 $\Delta m_t = 3.8 \quad 3.7 \text{ GeV}$

arXiv:0906.1172v2

Consistent with SM expectations

Search for Narrow Resonance in ttbar production

- Some 'new physics' models predict ttbar bound states
 - ⇒ Top color assisted technicolor with leptophobic Z´ (Phys. Rept. 317 (1999) 143)
- Search for 'bumps' in reconstructed M_{ttbar} spectrum
- Assume sufficiently narrow width (~1.3%) dominated by resolution

All Hadronic

D0 (3.6 fb^{-1}) :

M(Z') > 820 GeV @95% C.L.

DØ Note 5882-CONF

CDF (2.8 fb⁻¹):

M(Z') > 805 GeV @95% C.L.

Forward-Backward Asymmetry

- New physics could give rise to an asymmetry (Z´,axigluons,..)
- SM predicts at NLO A_{fb} =0.05 ± 0.015 %

$$A_{fb} = \frac{F - B}{F + B}$$

CDF (3.2 fb⁻¹):

A_{fb}=0.193 0.065 (stat) 0.024 (syst) %

D0 (1.0 fb^{-1}) :

 $A_{fb} = 0.12 \quad 0.08 \text{ (stat)} \quad 0.01 \text{ (syst) } \%$

CDF Conf. within 2 σ
Note 9724

PRL 100, 062004 (2008)

Search for Heavy t'

- Heavy t'production
 - ⇒ suggested in 4th generation models, little Higgs, 2HD models, Beautiful mirrows etc.
- Search for t't'-bar in Lepton + Jets

CDF (2.8 fb-1):

 $M(t') > 311 \text{ GeV/c}^2 \text{ at } 95\% \text{ C.L.}$

Search for FCNC in Top-Decays: t-> Zq

In SM FCNC strongly suppressed in the top sector: BR $\approx 10^{-14}$. signal = new physics

Look for t -> Zq decays

Select events: 4 jets + 2 leptons

Construct mass χ^2 to measure ttbar-likeness:

$$\chi^2 = \left(\frac{M_{qq} - M_W}{\sigma_W}\right)^2 + \left(\frac{M_{bqq} - M_t}{\sigma_{t \to qqb}}\right)^2 + \left(\frac{M_{Zq} - M_t}{\sigma_{t \to Zq}}\right)^2$$

FCNC Feldman-Cousins Band (95% C.L.)

Top Quark Properties Summary

Property	Run II Measurement	SM prediction	Luminosity (fb-1)
m _t	CDF: 172.6 ± 0.9(stat) ± 1.2(syst) GeV D0: 174.2 ± 0.9(stat) ± 1.5(syst) GeV Tevatron: 173.1±0.6(stat)±1.1(syst)GeV		4.3 3.6
σ_{ttbar} (@m _t =172.5 GeV) σ_{ttbar} (@m _t =170 GeV)	CDF: 7.50 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (lumi) pb D0: $7.84^{+0.46}_{-0.45}$ (stat) $\pm 0.66_{-0.54}$ (syst) $\pm 0.54_{-0.46}$ (lumi) pb	7.4 ± 0.6 pb 8.06 +0.6 pb	4.5 1
$\sigma_{\text{singletop}}$ (@m _t =170 GeV)	Tevatron: 2.76 +0.58 _{-0.47} (stat+syst)	3.1±0.3 (PRD66 054024) 3.5± 0.2 (PRD74 114012)	3.2-2.3
$ V_{tb} $ (@m _t =170 GeV)	Tevatron: 0.91 ± 0.08 (stat+syst)	1	3.2-2.3
σ(gg->ttbar)/σ(qq->ttbar)	D0: 0.07+0.15-0.07(stat+sys)	0.18	1
m _t - m _{tbar}	D0: 3.8 ± 3.7 GeV	0	1
$\sigma(tt \rightarrow II)/\sigma(tt \rightarrow I+jets)$	D0: 0.86 +0.19 -0.17 (stat+syst)	1	1
$\sigma(tt \rightarrow \tau I)/\sigma(tt \rightarrow II + I+jets)$	D0: 0.97 +0.32 _{-0.29} (stat+syst)	1	1
$\sigma_{\text{ttbar+jets}}$ (@m _t =172.5 GeV)	CDF: 1.6 ± 0.2 (stat) ± 0.5 (syst)	1.79+0.16 -0.31 pb	4.1
CTtop	CDF: 52.5µm @ 95%C.L.	10 ⁻¹⁰ μm	0.3
Гтор	CDF: <13.1 GeV @ 95%C.L.	1.5 GeV	1
BR(t->Wb)/BR(t->Wq)	CDF: >0.61 @ 95% C.L. D0: 0.97 +0.09 -0.08 (stat+syst)	1	0.2 0.9
F ₀	CDF: 0.62 ± 0.11 D0: 0.490 ±0.106 (stat) ±0.085 (syst)	0.7	2 2.7
F.	CDF: -0.04 ± 0.05 D0: 0.110 ±0.059 (stat) ±0.052 (syst)	0.0	2 2.7
Charge	CDF: - 4/3 excluded with 87% C.L. DO: 4e/3 excluded at 92% C.L.	2/3	1.5 0.37
Spin correlations	CDF: κ = 0.32 + 0.55 - 0.78, -0.46 < K < 0.87 @ 68%C.L. D0: κ = -0.17 $^{+0.65}_{-0.53}$ (stat + syst)	0.78 _{-0.022} +0.027	2.8 4.2
Charge asymmetry	CDF: 0.19 ± 0.07(stat) ± 0.02(syst) %	0.05 +- 0.015	3.2

Summary and Outlook

- Top quark production and decay are currently being studied at Tevatron
 - ⇒ So far top quark seems to be standard model top quark
 - √ ttbar cross section known to 6.5% (better than theory!)
 - √ Mass measured to < 0.8% precision
 </p>
 - ⇒ Single top quarks have been observed!
 - ✓ Most precise direct determination of V_{tb} to date
- Tevatron expects to double data sets if running through 2011
- LHC will open up a new era of Top physics ⇒Top factory
 - ✓ With 100 pb⁻¹ cross section can be measured with < 20% precision
 - \checkmark Studies of other top properties and the Wtb vertex require good detector understanding and 1-10 fb⁻¹ to reach maturity
- Tevatron's top physics program and understanding of systematic effects will continue to play a significant role for years to come

For more information:

Top Physics Results from the Tevatron:

http://www-cdf.fnal.gov/physics/new/top/top.html

http://www-d0.fnal.gov/Run2Physics/WWW/results/top.htm

- Top Physics at the LHC:
 - ⇒See S. Mehlhase talk in DG1

Afb vs Mttbar mass

Scan for A_{fb} asymmetries for 8 different M_{tthar} thresholds

Top Branching Ratio

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{\mid V_{tb}\mid^2}{\mid V_{tb}\mid^2 + \mid V_{ts}\mid^2 + \mid V_{td}\mid^2} \quad \text{Is there room for } t \to W + q_x \text{ decay ?}$$

We measure R from the ratio of events with 0,1,2 b-tags

$$R = B(t \to Wq)/B(t \to Wb)$$
=0.97^{+0.09}_{-0.08} (D0)
=1.12^{+0.27}_{-0.23} (CDF)

Assuming three generations and the unitarity of the CKM matrix, the denominator is unity, and we estimate |Vtb| > 0.78 at 95% C.L. (CDF)