Review on rare kaon decays

Giancarlo D'Ambrosio INFN-Sezione di Napoli

Perugia, 16th September 09

WIN 2009 Perugia, 16th September 09

Outline

- SM-Flavour physics tests CKM determination
- Rare Kaon decays
- $K^+ \to \pi^+ \nu \bar{\nu}$
- Chiral Perturbation theory
- $K_L \rightarrow \pi^0 ee$ and related channels $K \rightarrow \pi \gamma \gamma$ and $K \rightarrow \pi ee$
- $K^+ \rightarrow \pi \pi \gamma$ and CP violation
- Conclusions

Standard Model FCNC

• SM with 3 families \implies weak int. with an unit. mat. V_{ij} : 3 angles and 1 phase (CPV)

$$\underbrace{V_{ud}, V_{cb}, V_{td}}^{\text{Wolfenstein}} \Longrightarrow \lambda, A\lambda^2, A\lambda^3 (1 - \rho - i\eta)$$

• FCNC only at 1-loop

$$\mathcal{H}_{\Delta F=2}^{SM} \sim \frac{G_F^2 M_W^2}{16\pi^2} \left[\frac{(V_{td}^* m_t^2 V_{tb})^2}{v^4} (\bar{d}_L \gamma^\mu b_L)^2 + \frac{(V_{td}^* m_t^2 V_{ts})^2}{v^4} (\bar{d}_L \gamma^\mu s_L)^2 \right] + \text{charm}$$

• The area of all possible CKM-unitarity triangles is an invariant:

$$|J_{CP}| \stackrel{Wolfenstein}{\simeq} A^2 \lambda^6 \eta$$

• As we shall see $B(K_L \to \pi^0 \nu \overline{\nu})$ will measure this area

Theory versus expts.

•
$$K^+: t > \text{charm} \overset{\text{NLO-QCD}}{\Longrightarrow} K^+ \mathcal{O}(5\%), K_L \mathcal{O}(1\%)$$

- BR $(K \to \pi \nu \overline{\nu})_{\text{TH}}$ K^+ $(0.8 \pm 0.1) \cdot 10^{-10}$ $K_L : (3.0 \pm 0.6) \cdot 10^{-11}$
- $B(K^+) = (1.5^{+1.3}_{-0.9}) \cdot 10^{-10}$ BNL-E787/E949 P326 at CERN

 $B(K_L) \le 2.1 \times 10^{-7}$ at 90%C.L. E391 at KEK 10% data

• K_L Model-independent bound, based on SU(2) properties dim-6 operators for $\overline{s}d\overline{\nu}\nu$ Grossman-Nir

$$B(K_L) \leq \frac{\tau_L}{\tau_+} \times B(K^{\pm})_{E949} \leq 1.4 \times 10^{-9} \text{ at } 90\% C.L.$$

New Physics searches at NA62 100 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Mescia

Chiral Perturbation Theory

 χPT effective field theory based on the two assumptions

- π 's are the Goldstone boson of $SU(3)_L \otimes SU(3)_R \to SU(3)_V$
- (chiral) power counting i.e. the theory has a small expansion parameter: $p^2 / \Lambda_{\chi SB}^2$: $\Lambda_{\chi SB} \sim 4\pi F_{\pi} \sim 1.2 \text{ GeV}$

$$\mathcal{L}_{\Delta S=0} = \mathcal{L}_{\Delta S=0}^{2} + \mathcal{L}_{\Delta S=0}^{4} + \dots = \frac{F_{\pi}^{2}}{4} \left\langle \overline{D_{\mu}UD^{\mu}U^{\dagger} + \chi U^{\dagger} + U\chi^{\dagger}} \right\rangle + \sum_{i}^{K \to \pi..} L_{i}O_{i} + \dots$$

Fantastic chiral prediction $A_{\pi\pi} \sim (s - m_\pi^2)/{F_\pi}^2$

Weinberg, Colangelo et al

$$\mathcal{L}_{\Delta S=1} = \mathcal{L}_{\Delta S=1}^2 + \mathcal{L}_{\Delta S=1}^4 + \dots = G_8 F^4 \underbrace{\langle \lambda_6 D_\mu U^\dagger D^\mu U \rangle}_{K \to 2\pi/3\pi} + \underbrace{G_8 F^2 \sum_i N_i W_i}_{K^+ \to \pi^+ \gamma \gamma, K \to \pi l^+ l^-} + \dots$$

Vector Meson Dominance in the strong sector

Ecker, Gasser, de Rafael, Pich

i	$L^r_i(M_ ho)$	V	A	Total	Total ^{c)}
1	0.4 ± 0.3	0.6	0	0.6	0.9
2	1.4 ± 0.3	1.2	0	1.2	1.8
3	-3.5 ± 1.1	-3.6	0	-3.0	-4.9
4	-0.3 ± 0.5	0	0	0.0	0.0
5	1.4 ± 0.5	0	0	1.4	1.4
6	-0.2 ± 0.3	0	0	0.0	0.0
7	-0.4 ± 0.2	0	0	-0.3	-0.3
8	0.9 ± 0.3	0	0	0.9	0.9
9	6.9 ± 0.7	$6.9^{a)}$	0	6.9	7.3
10	-5.5 ± 0.7	-10.0	4.0	-6.0	-5.5

$$egin{aligned} F_V &= 2G_V = \sqrt{2}f_\pi, \ F_A &= f_\pi \ M_A &= \sqrt{2}M_V \end{aligned}$$

$$L_1^V = \frac{L_2^V}{2} = -\frac{L_3^V}{6} = \frac{G_V^2}{8M_V^2}, \qquad L_9^V = \frac{F_V G_V}{2M_V^2}, \qquad L_{10}^{V+A} = -\frac{F_V^2}{4M_V^2} + \frac{F_A^2}{4M_A^2}$$

Theoretical motivations of success of VMD

• VMD improves the matching with QCD

Ecker, Gasser, Leutwyler, Pich, de Rafael

Donoghue, Ramirez, Valencia

$$F_V^{\pi^{\pm}}(t) \approx \frac{M_{\rho}^2}{M_{\rho}^2 - t},$$

$$L_1^V = L_2^V/2 = -L_3^V/6 = L_9^V/8 = -L_{10}^{V+A}/6 = f_{\pi}^2/(16M_V^2)$$
.

• Picture consolidated by in the chiral quark model χQM Georgi-Manohar;Espriu,de Rafael,Taron This is a dynamical interpretation (in CHPT) of the success of the non-relativstic quark model. In this model

$$L_i^{\chi \text{QM}} \sim L_i^{VMD}$$

- Also Large N
- Strong consolidated picture: Must work also in the WEAK sector in some way: WHICH WAY?

• Many CT's (37)

Review on rare kaon decays

Ecker, Kambor, Wyler: G.D. Portoles

 $\mathcal{L}^{(4)}_{|\Delta S|=1} = G_8 F^2 \sum_{i=1}^{37} N_i W_i$

- There are **tests**
- $K^+ \to \pi^+ \pi^0 \gamma$ and $K_S \to \pi^+ \pi^- \gamma$ same CT combination
- $K \to \pi l^+ l^-$, $K^+ \to \pi^+ \pi^0 \gamma$, $K^+ \to \pi^+ \gamma \gamma$ (observed or close to observation) and others probe the same CT's \Longrightarrow CHPT tests
- Low energy constants of the Electroweak Lagrangian G_8, N_i are integrals of appropriate QCD Greens Functions Knecht, Peris, de Rafael
- We need desperately some dynamical info and also some theory prejudice
- VMD must work and it is easy testable: form factor

G. D'Ambrosio

Review on rare kaon decays

Counterterm combination	Processes	VMD weak coupling
$N_{14}^r - N_{15}^r$	$K^+ o \pi^+ \gamma^*$	
	$K^+ o \pi^+ \pi^0 \gamma^*$	$-0.020 \eta_V + 0.004 \eta_A$
$2N_{14}^r + N_{15}^r$	$K_S o \pi^0 \gamma^*$	$0.08\eta_V$
$N_{14} - N_{15} - 2N_{18}$	$K^+ o \pi^+ \gamma \gamma$	
	$K^+ o \pi^+ \pi^0 \gamma \gamma$	$-0.01\eta_A$
$N_{14} - N_{15} - N_{16} - N_{17}$	$K^+ o \pi^+ \pi^0 \gamma$	
	$K_S o \pi^+ \pi^- \gamma$	$-0.010\eta_A$
$N_{14}^r - N_{15}^r - 3(N_{16}^r - N_{17})$	$K_L o \pi^+ \pi^- \gamma^*$	$-0.004 \eta_V + 0.018 \eta_A$
$N_{14}^r - N_{15}^r - 3(N_{16}^r + N_{17})$	$K_S o \pi^+ \pi^- \gamma^*$	$0.05\eta_V-0.04\eta_A$
$N_{14}^r + 2N_{15}^r - 3(N_{16}^r - N_{17})$	$K^+ o \pi^+ \pi^0 \gamma^*$	$0.12\eta_V+0.01\eta_A$
$N_{29} + N_{31}$	$K_L o \pi^+ \pi^- \gamma$	$0.005\eta_V+0.003\eta_A$
$3N_{29} - N_{30}$	$K^+ o \pi^+ \pi^0 \gamma$	$-0.005 \eta_V - 0.003 \eta_A$

Observation hidden by other effects: different analysis maybe useful (Kaon charge radius) NA48 has a good chance

$K_L(p) \to \pi^0(p_3)\gamma(q_1)\gamma(q_2)$							
Lorentz + gauge invariance \Rightarrow I	$M \sim 1$	A(y,z)	B(y,z)				
$y = p \cdot (q_1 - q_2) / m_K^2, z = (q_1 + q_2)^2 / m_K^2$ $r_\pi = m_\pi / m_K$	Ì	$egin{array}{l} \gamma\gamma\ J=0\ F^{\mu u}F_{\mu u} \end{array}$	$\gamma\gamma \ { m D-wave too} \ F^{\mu u}F_{\mu\lambda}\partial_ u K_L\partial^\lambda\pi^0$				
• $\frac{d^2\Gamma}{dydz} \sim z^2 A + B ^2 + \left(y^2 - \left(\frac{(1 + r_\pi^2 - z)^2}{4}\right)^2 + \left(y^2 - \left(\frac{(1 + r_\pi^2 - z)^2}{4}\right)^2\right)^2 + \frac{d^2\Gamma}{4}\right)^2 + \frac{d^2\Gamma}{4} $	$(r_{\pi}^2)^2 - r_{\pi}^2$	$\left(\right) \right)^{2} B ^{2}$	S,B				

• Different gauge structure $\Rightarrow B \neq 0$ at $z \rightarrow 0$ (collinear photons).

Crucial role in $K_L \to \pi^0 e^+ e^-$

A suppressed by m_e/m_K

B is not

Morozumi et al, Flynn Randall

Sehgal Heiliger, Ecker et al., Donoghue et al.

NA48 and KTeV : 1 parameter fit a_V with unitarity corrections NA48 $B(K_L \to \pi^0 \gamma \gamma) = (1.36 \pm 0.05) \cdot 10^{-6}$ $a_V = -0.46 \pm 0.05$ KTeV $B = (1.29 \pm 0.03 \pm 0.05) \times 10^{-6}$ $a_V = -0.31 \pm 0.05 \pm 0.07$

$$K^{+} \to \pi^{+} \gamma \gamma$$

$$\gamma \gamma \text{ in } \begin{array}{c} J = 0 \\ \overbrace{F_{\mu\nu}F^{\mu\nu}}^{F} F \widetilde{F} \\ P = +1 \\ A \end{array} \begin{array}{c} D = -1 \\ B \\ \end{array}$$

 ${\sf Lorentz} + {\sf gauge invariance}$

$$\frac{d^2\Gamma}{dydz} \sim \left[z^2 (|A + B|^2 + |C|^2) + \left(y^2 - \left(\frac{(1 + r_\pi^2 - z)^2}{4} - r_\pi^2 \right) \right)^2 |B|^2 \right]$$

• $O(p^6)$

G.D., Portoles 96

Unitarity corrections: 30%-40%

 a_{V^+} negligible

NA48 preliminary $B = (1.07 \pm 0.04 \pm 0.08) \cdot 10^{-6}$ assuming $\hat{c} = 2$

Review on rare kaon decays

$K^{\pm}(K_S) \to \pi^{\pm}(\pi^0)\ell^+\ell^-$

• short distance << long distance

LD described by form factor W

- Observables $\Gamma(K^+ \to \pi^+ e^+ e^-)$, $\Gamma(K^+ \to \pi^+ \mu \overline{\mu})$, slopes
- $a_i \quad O(p^4) \qquad a_+ \sim N_{14} N_{15}, \qquad a_S \sim 2N_{14} + N_{15}$ Ecker, Pich, de Rafael
- $b_i = O(p^6)$ G.D., Ecker, Isidori, Portoles
- a_+, b_+ in general not related to a_S, b_S

• Expt. E865 $K^+ \to \pi^+ e^+ e^-: a_+ = -0.586 \pm 0.010 \quad b_+ = -0.655 \pm 0.044$

confirmed by NA48/2 (1.4 $\sigma{\rm 's}$ away) also in $K^+ \to \pi^+ \mu \overline{\mu}$

Problems: a_i b_i same phenomenological size p^4 p^6 different theoretical order

Explained by interplay of the large $\pi\pi$ rescattering effect and VMD. $\pi\pi$ rescattering is not present in K_S -decays. Then we can just parameterize

$$Br(K_S \to \pi^0 e^+ e^-) = 4.6 \times 10^{-9} a_S^2$$

not predicted but dynamically interesting: $a_S \sim \mathcal{O}(1)$

 $K_S \rightarrow \pi^0 l^+ l^-$ at NA48/1 Collaboration at CERN • $K_S \rightarrow \pi^0 e^+ e^-$ 7 evts observed (with 0.15 expected bkg evts)

$$B(K_S \to \pi^0 e^+ e^-)_{m_{ee} > 165 \text{ MeV}} = \left(3.0^{+1.5}_{-1.2} \pm 0.2\right) \times 10^{-9}$$

$$|a_S| = 1.08^{+0.26}_{-0.21}$$

•
$$K_S \rightarrow \pi^0 \mu^+ \mu^-$$
 6 events observed

$$B(K_S \to \pi^0 \mu^+ \mu^-) = \left(2.9^{+1.5}_{-1.2} \pm 0.2\right) \times 10^{-9}$$

$$|a_S|_{\mu\mu} = 1.54^{+0.40}_{-0.32} \pm 0.06$$

$$K_L \rightarrow \pi^0 e^+ e^-$$
 : summary

 $Br(K_L \to \pi^0 e^+ e^-) \le 2.8 \cdot 10^{-10}$ KTeV

CP conserving NA48

$$Br(K_L \to \pi^0 e^+ e^-) < 3 \cdot 10^{-12}$$

$$V-A \otimes V-A \Rightarrow \langle \pi^0 e^+ e^- | (\bar{s}d)_{V-A} (\bar{e}e)_{V-A} | K_L \rangle$$
 violates CP

Possible large interference: $a_S < -0.5$ or $a_S > 1$; short distance probe even for a_S large

$$|2) + 3)|^{2} = \left[15.3 \ a_{S}^{2} - 6.8 \frac{Im\lambda_{t}}{10^{-4}} \ a_{S} + 2.8 \left(\frac{Im\lambda_{t}}{10^{-4}}\right)^{2}\right] \cdot 10^{-12}$$

$$[17.7 \pm 9.5 + 4.7] \cdot 10^{-12}$$

$$K(p_K) \to \pi(p_1)\pi(p_2)\gamma(q)$$

• Lorentz + gauge invariance \Rightarrow Electric (E) and Magnetic(M) amplitude

$$A(K \to \pi \pi \gamma) = \mathbf{F}^{\mu\nu} \left[\mathbf{E} \partial_{\mu} K \partial_{\nu} \pi + \mathbf{M} \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

• Unpolarizated photons

$$\frac{d^{2}\Gamma}{dz_{1}dz_{2}} \sim |E|^{2} + |M|^{2}$$
$$|E^{2}| = |E_{IB}|^{2} + 2Re(E_{IB}^{*}E_{D}) + |E_{D}|^{2}$$
$$\downarrow$$
Low Theorem $\Rightarrow E_{IB} \sim \frac{1}{E_{\gamma}^{*}} + c$
$$E_{D}, M \text{ chiral tests}$$

We need FIGHT DE/IB $\sim 10^{-3}$

	IB	DE_{exp}	
$K_S \to \pi^+ \pi^- \gamma$	10^{-3}	$< 9 \cdot 10^{-5}$	E1
$K^+ \to \pi^+ \pi^0 \gamma$	10^{-4} $(\Delta I = \frac{3}{2})$	$(0.44 \pm 0.07) 10^{-5}$ PDG	M1, E1
$K_L o \pi^+ \pi^- \gamma$	$\frac{10^{-5}}{(\mathrm{CPV})}$	$(2.92 \pm 0.07) 10^{-5}$ KTeVnew	M1,VMD

CPV is only from IB K_L (also measured in $K_L \to \pi^+ \pi^- e^+ e^-$) BUT IB suppressed in K^+ and K_L . $K_L \to \pi^+ \pi^- \gamma$

G. D'Ambrosio

M1 transtions clearly measured KTeV (00) with large slope

form factor measured

 $\mathcal{F} = 1 + rac{\mathbf{a}}{1 - rac{m_k^2}{m_
ho^2} + rac{2m_K E_\gamma^*}{m_
ho^2}}$ E_γ^* photon energy

KTeV:

•
$$a = -1.243 \pm 0.057$$

• χ^2/DOF linear slope quadratic slope \mathcal{F} χ^2/DOF 43.2/27 37.6/26 38.8/27

 \Rightarrow Large VMD: ρ -pole

Theory $M1 \sim a_2 + 2a_4 + h.o.$

 \downarrow

Large VMD in the a_i . Not automatic in all spin-1 formulations

```
[G.D. Portoles, G.D. Gao]
```

We should find a consistent treatment with M1 in $K^+ \to \pi^+ \pi^0 \gamma$

$$K^+ \to \pi^+ \pi^0 \gamma$$

$$A(K \to \pi \pi \gamma) = F^{\mu\nu} \left[E \partial_{\mu} K \partial_{\nu} \pi + M \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

E1 and M1 are measured with Dalitz plot

$$\frac{\partial^2 \Gamma}{\partial T_c^* \partial W^2} = \frac{\partial^2 \Gamma_{IB}}{\partial T_c^* \partial W^2} \left[1 + \frac{m_{\pi^+}^2}{m_K} 2Re\left(\frac{E1}{eA}\right) W^2 + \frac{m_{\pi^+}^4}{m_K^2} \left(\left|\frac{E1}{eA}\right|^2 + \left|\frac{M1}{eA}\right|^2 \right) W^4 \right]$$
$$\frac{W^2}{W^2} = (q \cdot p_K)(q \cdot p_+) / (m_{\pi}^2 m_K^2)$$

$$A = A(K^+ \to \pi^+ \pi^0)$$

$K^+ \rightarrow \pi^+ \pi^0 \gamma \ W - T_c$ Dalitz plot

Integrating over T_c deviations from IB measured

G. D'Ambrosio

 \parallel

Cheng

Bijnens, Ecker, Pich; G.D., Gao

$$K^+ \to \pi^+ \pi^0 \gamma$$

• E787 has measured M1 and $\operatorname{Re}\left(\frac{E1}{E_{IB}}\right) \sim (-0.4 \pm 1.6)\%$

• E1 dominated by CT \Rightarrow E787 constrains models ($k_f < 1$)

• $\frac{d\Gamma}{dW}$ may be crucial to study well the form factor $W^2 = (q \cdot p_K)(q \cdot p_+)/(m_\pi^2 m_K^2)$

• to establish VMD

CP asymmetry $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$

- Better to measure asymm. in the slope than in the rate: in $\frac{\partial^2 \Gamma^{\pm}}{\partial T_c^* \partial W^2}$ we can select a favourable kin. region (large W^2)
- For the calculation useful the compensating channel $K^\pm \to \pi^\pm \pi^0$
- This asymm., Ω , in extensions of SM $\sim \mathcal{O}(10^{-4})$ Colangelo et al.
- $\mathsf{SM} \le \mathcal{O}(10^{-5})$ Paver et al.
- Assuming the expts. are almost seeing the CP conserving E1 Statistics seems tough but previous limit (Smith eta I. 76) weak
- Similar analysis for CPV in K_L : but time interf. required

Conclusions

- $K \to \pi \nu \nu$
- Hard work for other channels
- phenomenology+ theory very important
- important to see $K_L \rightarrow \pi^0 e^+ e^-$
- CHPT useful to uncover New Physics

$$K \to 3\pi$$
: slope asymm. $\Delta g/2g = (g_+ - g_-)/(g_+ + g_-)$

 \Downarrow

• Isospin decomposition, rescattering properties

• $A(K^+ \to \pi^+ \pi^+ \pi^-) = a e^{i\alpha_0} + b e^{i\beta_0} Y + \mathcal{O}(Y^2)$

- CPT relates $\begin{array}{rcl} A(K^+ \to \pi^+ \pi^+ \pi^-) &=& a e^{i\alpha_0} + b e^{i\beta_0} Y \\ A(K^- \to \pi^- \pi^- \pi^+) &=& a^* e^{i\alpha_0} + b^* e^{i\beta_0} Y \end{array}$
- The asymmetry $\frac{g_+ g_-}{g_+ + g_-} = \left[\frac{\Im b}{\Re b} \frac{\Im a}{\Re a}\right] \sin(\alpha_0 \beta_0),$ can be evaluated in CHPT
- Only one operator at $\mathcal{O}(p^2)$: $G_8 e^{i\phi} \langle \lambda_6 \partial_\mu U \partial^\mu U^\dagger \rangle$ $\phi \Delta I = 1/2$ electroweak phase
- Then if we stop at $\mathcal{O}(p^2)$ $\frac{\Im b}{\Re b} = \frac{\Im a}{\Re a} \Rightarrow \Delta g/2g = 0$

• However $\mathcal{O}(p^4)$ is necessary in order to reproduce the phenomenological values $\frac{\Delta a}{a}\sim \frac{\Delta b}{b}\sim 30\%$

- splitting
$$a=a^{(2)}+a^{(4)}$$
 and $b=b^{(2)}+b^{(4)}$

 \Downarrow

$$\frac{\Delta g}{2g} = \frac{\Im A^0}{\Re A^0} (\alpha_0 - \beta_0) \left(\frac{\Re b^{(4)}}{\Re b^{(2)}} - \frac{\Im b^{(4)}}{\Im b^{(2)}} + \frac{\Im a^{(4)}}{\Im a^{(2)}} - \frac{\Re a^{(4)}}{\Re a^{(2)}} \right)$$
G.D., Isidori, Paver

- Since
 - $\left| \frac{\Im A^{0}}{\Re A^{0}} \right| \sim 22\epsilon' \sim 10^{-4} \qquad (\alpha_{0} \beta_{0}) \sim 0.1$
 - to maximize Δg , we take $\mathcal{O}(p^4) \sim \mathcal{O}(p^2)$
- $\Delta g/2g \le 10^{-5}$ NA48 $(1.5 \pm 2.2) \cdot 10^{-4}$

New Physics

- New Physics: crucial to have large $\Delta g/2g$ is to find an operator which affects $K \to 3\pi$ but not $K \to 2\pi$, limited by the experimental size of ϵ'
- In fact Masiero- Murayama explanation of a possible large size of ϵ' does the job!
- They suggest that susy (s-)particles, introduce new flavour structures affecting only the $\Delta S = 1$ and not $\Delta S = 2$ interactions

 $\mathcal{H}_{\text{mag}} = C_g^+ Q_g^+ + C_g^- Q_g^- + \text{h.c.}$

$$Q_g^{\pm} = \frac{g}{16\pi^2} \left(\bar{s}_L \sigma^{\mu\nu} t^a G^a_{\mu\nu} d_R \pm \bar{s}_R \sigma^{\mu\nu} t^a G^a_{\mu\nu} d_L \right)$$

- Q_g^+ is affects only $K \to 3\pi$; Q_g^- only $K \to 2\pi$ G.D,Isidori,Martinelli
- As a result by tuning properly C_g^\pm we can generate large $\Delta g/2g~(\leq 10^{-4})$

- The large slope for $K^+ \to \pi^+ e^+ e^-$ calls for large VMD
- $K^+ \to \pi^+ e^+ e^-$ receives substantial $\pi\pi$ -loop, contrary to $K_S \to \pi^0 e^+ e^-$ (~ 0),
- if we split

$$\left(\frac{a_i^{\rm VMD}}{1-zm_K^2/m_V^2} + a_i^{\rm nVMD}\right) \approx \left[\left(a_i^{\rm VMD} + a_i^{\rm nVMD}\right) + a_i^{\rm VMD}\frac{m_K^2}{m_V^2}z\right]$$

Then we can determine both terms from expt.

$$a_{+}^{\rm VMD} = \frac{m_V^2}{m_K^2} b_{+}^{\rm exp} = -1.6 \pm 0.1 , \qquad a_{+}^{\rm nVMD} = a_{+}^{\rm exp} - a_{+}^{\rm VMD} = 1.0 \pm 0.1$$

- Also we can hope a_i^{VMD} obey a short distance relation since i) VMD is a larger scale and ii) NOT affected by $\pi\pi$ -loop
- The only operator at short distances is $Q_7=\overline{s}\gamma^\mu(1-\gamma_5)d\,\overline{\ell}\gamma_\mu\ell$,

$$\mathcal{H}_{eff}^{|\Delta S|=1} = \frac{G_F}{\sqrt{2}} V_{us}^* V_{ud} \Big[\sum_{i=1}^{6,7V} (\boldsymbol{z}_i(\boldsymbol{\mu}) + \tau \boldsymbol{y}_i(\boldsymbol{\mu})) Q_i(\boldsymbol{\mu}) + \tau \boldsymbol{y}_{7A}(M_W) Q_{7A}(M_W) \Big]$$

 $\tau = -V_{ts}^* V_{td}/V_{us}^* V_{ud}$. The Wilson coefficients $z_7(\mu)$ and $\tau y_7(\mu)$ determine the CPC CPV amplitudes and their relative sign. The isospin structure of Q_{7V} leads

$$(a_S)_{\langle Q_{7V} \rangle} = -(a_+)_{\langle Q_{7V} \rangle}$$

• If this relation is obeyed by the full VMD amplitude

$$(a_S^{\rm VMD})_{\langle Q_{7V} \rangle} = -a_+^{
m VMD} = 1.6 \pm 0.1$$

n good agreement with NA48 $(|a_S| = 1.08^{+0.26}_{-0.21})$

Т

• Having i) separated the contribution better suited to comparison with s.d. (VMD) and ii) realized that this dominates Theoret. and Phenom.(NA48) a_S

