Testing neutrino mass models @ LHC

M. Hirsch

mahirsch@ific.uv.es

Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain

$\ensuremath{\mathcal{I}}$. Introduction

\mathcal{II} . "Low-scale" seesaw

\mathcal{III} . Radiative neutrino mass models

\mathcal{IV} . \mathbb{R}_p Supersymmetric neutrino masses

$\ensuremath{\mathcal{V}}\xspace$. High-scale Seesaw and SUSY

Introduction

If Lepton Number is Violated:

Weinberg, 1979

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \frac{\kappa_{\alpha\beta}}{\mathcal{M}_{LNV}} (L_{\alpha}H) (L_{\beta}H)$$

Many realizations:

(i) Seesaw mechanism: Type-I, Type-II, Type-III, Inverse seesaw, etc ...
(ii) Radiative models: Zee, Babu, LQs ...
(iii) SUSY neutrino masses: R-parity violation
(iv) · · ·

Non-supersymmetric

"Low-scale" seesaw

WIN-09, 15/09/2009 - p.5/32

`Classical' Seesaw

In the basis (ν_L , ν_R) write mass matrix:

$$\mathcal{M}_{
u} = \left(egin{array}{cc} 0 & m_D \ m_D & M_M \end{array}
ight)$$

Minkowski, 1977 Yanagida, 1979 Gell-Mann, Ramond & Slansky, 1979 Mohapatra & Senjanovic, 1980

If $m_D \ll M_M$:

$$m_{1/2}\simeq (-rac{m_D^2}{M_M},M_M)$$

⇒ For 3 ν_R 21 parameters ⇒ At low energy12 parameters measurable: 3 m_{l_i} , 3 m_{ν_i} , 3 angles & 3 phases

Santamaria, 1993

.

Seesaw type-I and LHC

Diagrams for N_R production at LHC:

del Aguila et al., 2008:

 $\sum_{i} |V_{eN_i}|^2 \le 0.0030$ $\sum_{i} |V_{\mu N_i}|^2 \le 0.0032$ $\sum_{i} |V_{\tau N_i}|^2 \le 0.0062$

 $\frac{\text{From }0\nu\beta\beta}{\sum_i|V_{eN_i}^2\frac{1}{m_{N_i}}|} \leq 5\times 10^{-8}\,\text{GeV}^{-1}$

del Aguila & Aguilar-Saavedra, 2009: $\sigma(LHC) \leq 180 \text{ fb}^{-1} \text{ for } m_N = 100 \text{ GeV}$

Han & Zhang, 2006:

$$\sum_i |V_{\mu N_i}|^2 \le 10^{-4} \ (10^{-6})$$
 for $m_N = 100 \ {\rm GeV} \ (m_N = 50 \ {\rm GeV})$

 $\begin{array}{c} u \\ \overline{d} \end{array} \\ W^{+} \\ W^{+} \\ W^{-} \\ W^{-} \\ \overline{u} \end{array} \\ \sigma \propto |V_{lN}^{2}|$

WIN-09, 15/09/2009 - p.7/32

Seesaw-I, LHC and \mathcal{M}_{ν}

Estimate Yukawas:

$$h_{\nu} \sim \sqrt{\frac{m_{\nu} M_M}{v_U^2}} \sim \mathcal{O}(1) \left(\frac{m_{\nu}}{0.05 \text{ eV}}\right)^{1/2} \left(\frac{M_M}{10^{15} \text{ GeV}}\right)^{1/2} \\ \sim \mathcal{O}(10^{-6}) \left(\frac{m_{\nu}}{0.05 \text{ eV}}\right)^{1/2} \left(\frac{M_M}{1 \text{ TeV}}\right)^{1/2}$$

 \Rightarrow Recall:

 $\sqrt{s} = 10 (14)$ TeV @ LHC EW cross sections @ LHC: $\sigma(W \rightarrow l\nu) = 15$ nb Estimate: $\sigma(W \rightarrow lN) \leq \sigma(W \rightarrow l\nu) \times |V_{lN}|^2$ Luminosity: $\mathcal{L} = 10 \ fb^{-1}$ per year (planned) \rightarrow less than 10^{-4} events/year for $h_{\nu} \sim 10^{-6}$ Possible exception: Inverse Seesaw

Mohapatra & Valle, 1986

Seesaw: Type II

$$Y=2 \text{ Scalar triplet: } \Delta = (\Delta^{++}, \Delta^{+}, \Delta^{0})$$
Schechter & Valle, 1980, 1982
Cheng & Ll, 1980
Mohapatra, Senjanovic, 1981
...

$$\mathcal{M}_{\nu} = \begin{pmatrix} m_{M} & 0 \\ 0 & 0 \end{pmatrix}$$
with:

$$m_{M} \simeq Y^{\nu} \langle \Delta^{0} \rangle$$
Example:

SU(5) with 15:

$$\langle \Delta^{\mathbf{0}} \rangle \sim \frac{\langle h^{\mathbf{0}} \rangle^2}{m_{\mathbf{15}}}$$

 \Rightarrow With 2 triplets (SUSY) 15 parameters

Seesaw-II and LHC

Production at LHC through gauge bosons:

$$\begin{aligned} q\bar{q} &\to Z/\gamma \to \Delta^{++}\Delta^{--} \\ q\bar{q} \to Z/\gamma \to \Delta^{\pm}\Delta^{\mp} \\ q\bar{q}' \to W \to \Delta^{\pm\pm}\Delta^{\mp} \end{aligned}$$

Gunion et al., 1996

 $m_\Delta \leq 925~{
m GeV}$ with ${\cal L}=100~{
m fb}^{-1}$

Garayoa & Schwetz, 2008 Test neutrino mass hierarchy from:

 $\mathsf{Br}(\Delta^{++} \to l_i^+ l_j^+)$

many others ...

Seesaw: Type-III

As in seesaw type-I. Replace ν_R by $\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$. In the basis (ν_L, Σ) write mass matrix:

$$\mathcal{M}_{
u} = \left(egin{array}{cc} 0 & m_D \ m_D & M_\Sigma \end{array}
ight)$$

R. Foot et al., 1988 E. Ma, 1998

If $m_D \ll M_\Sigma$:

$$m_{1/2} \simeq \left(-\frac{m_D^2}{M_{\Sigma}}, M_{\Sigma}\right)$$

 \Rightarrow For 3 Σ 21 parameters

Seesaw-III and LHC

As in type-II: Production at LHC through gauge bosons, estimate:

Up to (roughly) $m_{\Sigma} \sim 1 \ {
m TeV}$

 \Rightarrow For 3 generations of Σ no correlation of decays of Σ with neutrino angles

Radiative neutrino mass models

Only two examples!

WIN-09, 15/09/2009 - p.13/32

Babu model

Cheng & Li, 1980; Zee, 1985; Babu, 1988:

$$\mathcal{L} = f_{\alpha\beta} (L_{\alpha L}^{Ti} C L_{\beta L}^{j}) \epsilon_{ij} h^{+} + h_{\alpha\beta}' (e_{\alpha R}^{T} C e_{\beta R}) k^{++} + \text{h.c.}$$

Scalar sector:

$$\mathcal{L} = -\mu h^+ h^+ k^{--} + \text{h.c.}$$

$$\mathcal{M}_{\nu} = \left(\frac{1}{(16\pi^2)}\right)^2 (fhf)(m_l)^2 \times \mathcal{I} = \underbrace{\downarrow_{k}}_{\nu_{\alpha} \quad \ell_{a} \quad \ell_{b} \quad \nu_{\beta}}^{h/(16\pi^2)}$$

Babu & Macesanu, 2002 :

 $m_{k^{++}}$ up to 800 GeV with 100 fb $^{-1}$ at LHC

Aristizabal & Hirsch, 2006:

Decay branching ratios of new scalars fixed by neutrino angles

Leptoquarks

Hypothetical particles coupling to lepton-quark pairs: $\mathcal{L}_{LQ-l-q} = +\lambda_{\tilde{S}_{1/2}}^{(R)} \, \overline{d}P_L l \, \tilde{S}_{1/2}^{\dagger} + \lambda_{S_{1/2}}^{(L)} \, \overline{q}P_R i\tau_2 e \, S_{1/2}^{L\dagger} + \cdots$

Buchmüller et al., 1987

LQ-Higgs interaction mixies different LQ states: $V = Y_{S_{1/2}}^{(i)} \left(Hi\tau_2 S_{1/2}^i \right) \left(\widetilde{S}_{1/2}^{\dagger} H \right) + \cdots$

Hirsch et al. 1996

Aristizabal et al. 2008

Kramer et al., 2005

WIN-09, 15/09/2009 - p.15/32

Supersymmetric neutrino masses

R-parity violation

bilinear R_p , spontaneous R_p , $\mu\nu$ SSM

WIN-09, 15/09/2009 - p.16/32

Supersymmetric \mathcal{M}_{ν}

R-parity violation as origin of neutrino mass:

 $ilde{\chi}^0$

Tree-Level

 $\langle H \rangle$

 $\langle H \rangle$

 u_L

Aulakh & Mohapatra, 1982 Hall & Suzuki, 1984 Ross & Valle, 1985

 \Rightarrow Easy to fit neutrino data, but no prediction for angles in general ... as in seesaw!

. . .

LHC and R_p

With R-parity violated LSP decays, thus any superpartner can be the LSP!

- \Rightarrow Neutralino
- \Rightarrow Chargino
- $\Rightarrow \text{Gluino}$
- \Rightarrow Charged scalar
- \Rightarrow Scalar neutrino
- \Rightarrow Scalar quark

Phenomenology depends on which is LSP, detailed studies so far only χ^0_1 and charged scalar

See, however: Hirsch & Porod 2003

Neutralino decay length

All Points with correct $\Delta m^2_{\rm Atm}$ and Δm^2_{\odot} :

Porod et al., 2001 Displaced vertex! No known SM background!

LHC reach

de Campos et al., 2008

Displaced vertex search

 $\sqrt{s} = 14$ TeV, $\mathcal{L} = 10$ and $100~{\rm fb}^{-1}$

Neutralino decay and θ_{Atm}

Ratio of branching ratios predicted from atmospheric neutrino measurement

Porod et al., 2001

WIN-09, 15/09/2009 - p.21/32

Spontaneous R_p

$\mathcal{W} = h_U^{ij} \widehat{Q}_i \widehat{U}_j \widehat{H}_u + h_D^{ij} \widehat{Q}_i \widehat{D}_j \widehat{H}_d + h_E^{ij} \widehat{L}_i \widehat{E}_j \widehat{H}_d$ $+ h_\nu^{ij} \widehat{L}_i \widehat{\nu}_j^c \widehat{H}_u - h_0 \widehat{H}_d \widehat{H}_u \widehat{\Phi} + h^{ij} \widehat{\Phi} \widehat{\nu}_i^c \widehat{S}_j$

- \Rightarrow Explains absence for trilinear terms
- \Rightarrow If scalar singlet gets vacuum expectation value: $\epsilon_i = h_i^{
 u} \langle \tilde{
 u}^c
 angle$
- ⇒ Spontaneous breaking of lepton number, Goldstone boson: Majoron
- $\Rightarrow \widehat{\Phi}$ potentially solves μ -problem \widehat{a} la NMSSM

Changes Pheno from explicit model due to:

- \Rightarrow Possibly invisible Higgs ($h^0 \rightarrow JJ$)
- $\Rightarrow \chi_1^0 \to J \nu$
- $\Rightarrow \mu
 ightarrow eJ$ anticorrelates with $\chi^0_1
 ightarrow J
 u$

Aulakh & Mohapatra, 1982 Ross & Valle 1985 Masiero & Valle 1990

•••

Hirsch et al., 2004, 2009

$\mathcal{W} = h_U^{ij} \widehat{Q}_i \widehat{U}_j \widehat{H}_u + h_D^{ij} \widehat{Q}_i \widehat{D}_j \widehat{H}_d + h_E^{ij} \widehat{L}_i \widehat{E}_j \widehat{H}_d$ $+ h_\nu^{ij} \widehat{L}_i \widehat{\nu}_j^c \widehat{H}_u - \lambda_i \widehat{H}_d \widehat{H}_u \widehat{\nu}_i^c + \kappa_{ijk} \widehat{\nu}_i^c \widehat{\nu}_j^c \widehat{\nu}_k^c$

As Next-to MSSM, but:

The $\mu\nu$ SSM

- $\Rightarrow \widehat{\Phi}$ identified as same field as ν^c
- \Rightarrow violates L explicitly
- \Rightarrow violates R_p explicitly
- \Rightarrow for heavy singlets approaches explicit bilinear model
- \Rightarrow For one $\hat{\nu}^c$: m_{ν} = Tree + Loop
- \Rightarrow More than one $\hat{\nu}^c$ all m_{ν_i} at tree-level

Lopez-Fogliani & Munoz, 2006 Escudero et al., 2008 Ghosh & Roy, 2009 Bartl et al., 2009

Distinguish R_p models?

Bartl et al., 2009

	Displaced vertex	Comment	Br(invisible)	Higgs decays
b- <i>R</i> p	Yes	Visible	≤ 10 %	standard
S- $ ot\!$	Yes/No	anti-correlates	any	non-standard
	(short)	with invisible		(invisible)
μu SSM	Yes/No	anti-correlates with	≤ 10 %	non-standard
	(long)	non-standard		

Note:

- \Rightarrow All models approach explicit \mathbb{R}_p if new singlet fields "heavy"
- \Rightarrow Correlation with neutrino angles lost if trilinear R_p sizeable
 - ... unless $m_{\chi^0_1} > m_W$ + displaced vertex allows $m_{\chi^0_1}$ reconstruction

Supersymmetric Seesaw

(Indirect signals for seesaw)

WIN-09, 15/09/2009 - p.25/32

Can we extrapolate from LHC to M_{GUT} ?

mSugra and RGEs

mSugra defined by:

 m_0 , $M_{1/2}$, A_0 , t_eta , sgn(μ)

 \Rightarrow No LFV in pure mSugra

Add Seesaw type-I:

Borzumati & Masiero, 1986

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} f(m_0, A_0, ...) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij}$$

 $(\Delta M_{\tilde{E}}^2)_{ij} \simeq 0$

Note: $L_i = \log[M_G/M_{R_i}]$.

Or Seesaw type-II:

Rossi, 2002

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} g(m_0, A_0, M_{1/2}, ...) (Y_T^{\dagger} Y_T)_{ij} \log(M_G/M_T)$$
$$(\Delta M_{\tilde{E}}^2)_{ij} = 0$$

 \Rightarrow Learn about \hat{M}_R or M_T from $(\Delta M_{\tilde{L}}^2)_{ij}$

Numerical results: SPheno3

Example: Seesaw-I, SPS3

Calculated assuming: (i) Degenerate N^c , (ii) TBM angles, (iii) best fit $\Delta m_{\rm A}^2$ and

 Δm_\odot^2 , (iv) $m_{
u_1}\equiv 0$:

 \Rightarrow Ratios constant as function of seesaw scale!

Numerical results: LHC

Seesaw-I: Left: SPS1a'

Right: SPS3

 \Rightarrow LHC can see LFV (if SPS3-like ...)

Hirsch et al. 2008 WIN-09, 15/09/2009 - p.29/32

V_{soft} & the seesaw-ll scale

RGEs allow to calculate low-scale SUSY masses. Example:

$$\begin{split} m_{\tilde{L}}^2 \simeq m_0^2 + 0.5 M_{1/2}^2 & \text{Blair, Porod} \\ m_{\tilde{E}}^2 \simeq m_0^2 + 0.15 M_{1/2}^2 & \text{Buckley \&} \\ M_1 \simeq 0.45 M_{1/2} & \text{Murayama, 2006} \end{split}$$

Form "invariants":

$$(m_{\tilde{L}}^2 - m_{\tilde{E}}^2)/M_1^2 \simeq 1.7$$
 Idea!

⇒ To first approximation no dependence on m_0 and $M_{1/2}$ ⇒ Departure from mSugra expecation contains info on high energy physics!

Soft masses and seesaw-ll

Four examples of "invariants" as function of $M_{15} = M_T$:

 \Rightarrow Consistent departures from mSugra point to M_T \Rightarrow Dependence on M_T only $\log(M_T)$

\mathcal{II} . "Low-scale" seesaw

Seesaw-I: (most probably) hopeless Seesaw-II: LNV, up to $m_{\Delta} \sim 1$ TeV Seesaw-III:Displaced vertex, up to $m_{\Sigma} \sim 1$ TeV

 \mathcal{III} . Radiative neutrino mass models

LQs up to 1.5 TeV; k^{++} up to 800 GeV; h^+/S^0 (few) 100 GeV; θ_{ν} correlate with decay properties

 \mathcal{IV} . \mathbb{R}_p Supersymmetric neutrino masses

LSP decays; χ_1^0 with displaced vertex up to $M_{1/2} = 1$ TeV θ_{ν} correlate with decay properties

$\ensuremath{\mathcal{V}}\xspace$. High-scale Seesaw and SUSY

LFV decays as indirect signals; precision measurements on masses for M_{LNV}