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Neutrino Mass beyond the SM

• SM: effective low energy theory with non-renormalizable terms

• new physics effects suppressed by powers of small parameter

• neutrino masses generated by dim-5 operators

     λij are dimensionless couplings;    M is some high scale

• mν small:    non-renormalizable terms (M is high)

lowest higher dimensional operator that probes high scale physics

• total lepton number and family lepton numbers broken
➡ lepton mixing and CP violation expected

➡ µ → e γ  ;  τ → µ γ  ;  τ → e γ decays ;  µ - e conversion
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Tri-bimaximal Neutrino Mixing

• Neutrino Oscillation Parameters (2σ) 

• indication for non-zero θ13: 

• Tri-bimaximal neutrino mixing:

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1
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∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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Tri-bimaximal Mixing

• Neutrino Oscillation Parameters [Circa 2006 + MINOS July 07] 

• Tri-bimaximal neutrino mixing:

• new KamLAND result: 

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global
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lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25 − 0.34), sin2 θ23 = 0.5 (0.38 − 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =
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3 −1/
√
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−
√
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, (2)

which predicts sin2 θatm,TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1)⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

1

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

1

Schwetz, Tortola, Valle (Aug 2008)

consistent with θ13 = 0 

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

1

3

Bari group,  June 2008

The effective neutrino mass matrix, Meff is symmetric and thus diagonalizable by orthogonal transformation:

UT
MNSMeffUMNS = diag(|m1|, |m2|, |m3|) (1)

where mi are the mass eigenvalues.

The UMNS matrix can be parametrized by,

UMNS = R(θ23) · R(θ13, δ) · R(θ12)P = V · P , (2)

=




c12c13 c13s12 s13e−iδ

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23

s12s23 − c12c23s13eiδ c12s23 − c23s12s13eiδ c13c23



 P (3)

=




c12c13 c13s12 s13

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23eiδ

s12s23 − c12c23s13eiδ c12s23 − c23s12s13eiδ c13c23eiδ



 Pα, (4)

=




1 0 0
0 1 0
0 0 eiδ








c12c13 c13s12 s13

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23eiδ

s12s23e−iδ − c12c23s13 c12s23e−iδ − c23s12s13 c13c23



 Pα (5)

= Pδ · VMaiani · Pα (6)

where VMaiani is the Maiani parametrization for the CKM matrix. The diagonal phase matrix, Pδ, on the left can
be absorbed by redefinition of the LH lepton doublets (which are Dirac particles). To see this, recall that for the
quark sector, in the mass eigenstate basis, one has the freedom to make the rotations on quark fields,

VCKM = VuV †
d → eiΦU VCKMe−iΦD , ΦU = diag(φu, φc, φt), ΦD = diag(φd, φs, φb) (7)

and the physical quantities should be invariant under the phase redefinition. For the lepton sector, as neutrinos
are Majorana particle, the Majorana condition does not allow the re-phasing. Thus the only re-phasing degrees of
freedom only exist for the charged leptons:

UMNS = V †
e Vν → eΦE V †

e Vν (8)

In the above equation, the matrices P and R are defined as follows:

R(θ23) =




1 0 0
0 c23 −s23

0 s23 c23



 , R(θ13) =




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13



 , R(θ12) =




c12 s12 0
−s12 c12 0

0 0 1



 (9)

P = PδPα =




1 0 0
0 eiα21/2 0
0 0 ei(α31/2+δ)



 , (10)

Pδ =




1 0 0
0 1 0
0 0 eiδ



 , Pα =




1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (11)

The parametrization invariant measures for CP violation due to Majorana phases are,

S1 ≡ Im{UMNS,e1U
∗
MNS,e3}, S2 = Im{UMNS,e2U

∗
MNS,e3} (12)

and the two Majorana phases, α21 and α31 are related to S1 and S2 as

cos α31 = 1− 2S2
1

|UMNS,e1|2|UMNS,e3|2
, cos(α31 − α21) = 1− 2S2

2

|UMNS,e2|2|UMNS,e3|2
(13)

1



Neutrino Mass Spectrum

• search for absolute mass scale:

• end point kinematic of tritium beta decays: 

• WMAP + 2dFRGS + Lyα:   ∑(mνi) < (0.7-1.2) eV

• neutrinoless double beta decay

Mainz:  mν < 2.2 eV
KATRIN: increase sensitivity ~ 0.2 eV

Tritium→ He3 + e− + νe

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

seesaw ⇒ Mν ∼




0 0 ∗
0 1 1
∗ 1 1





MT
d = Me ∼




∗ ∗ ∗
∗ ∗ 1
∗ ∗ 1





current bound: | < m > | < (0.19− 0.68) eV (CUORICINO, Feb 2008)

1
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Neutrino Mass Spectrum

normal hierarchy:
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sun
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inverted hierarchy:

!Ue3!2 ??

!Ue3!2 ??

The known unknowns: 

• How small is θ13?

• θ23 > π/4, θ23 < π/4, θ23 = π/4? 

•  Neutrino mass hierarchy (Δm13
2) ?

•  CP violation in neutrino oscillations?



Need for Precision Measurements
• current data post two challenges:

• why mν << mu,d,l 

• why lepton mixing large while quark mixing small

• To answer the first question => Seesaw mechanism: most 
appealing scenario 

• Seesaw: not sufficient to explain the whole mass matrix with mass 
hierarchy and two large and one small mixing angles

✴ flavor symmetry: there is a structure
‣ Possible symmetries show up only in the lepton sector 
‣ Connection between quark and lepton sectors (GUT 

symmetry)

• These scenarios have drastically different predictions
• To tell these models apart:  Precision measurements important
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Normal hierarchy

M =




A B B
B C D
B D C





∼
√

∆m2
12/∆m2

31

1

M =




A B B
B C D
B D C





∼
√

∆m2
12/∆m2

31

∼ ∆m2
12/∆m2

31

1

DPF 2004 André de Gouvêa, Northwestern University

Example:

zeroth order guesses

that capture dominant

features of neutrino

mixing (textures).

Note correlations.

Case Texture Hierarchy |Ue3| | cos 2θ23| (n.s.) | cos 2θ23| Solar Angle

A
√

∆m2
13

2





0 0 0

0 1 1

0 1 1



 Normal
√
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12

∆m2
13

O(1)
√

∆m2
12
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13
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B
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13
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0 1
2 −1

2
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 Inverted ∆m2
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13| – ∆m2
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13√
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0 1 1

1 0 0

1 0 0



 Inverted ∆m2
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13| | cos 2θ12| ∼ ∆m2
12

|∆m2
13|
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√

∆m2
13





1 1 1
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 Normala > 0.1 O(1) – O(1)

aOne may argue that the anarchical texture prefers but does not require a normal mass hierarchy.

1

Its is important to ask what each specific flavor model is teaching us. We have

to get more out of them then simply the values of the fermion masses and mixing angles

Do they predict anything else? Do they tell anything about GUTs?, etc

August 27, 2004 Neutrino Physics Theory

Altarelli, Feruglio, Masina, 02; 
Hall, Murayama, Weiner; 
Sato, Yanagida; Barbieri et 
al; ...

R. N. Mohapatra (‘04)

possible
textures:

leptonic 
family 

symmetry:



SO(10) GUT

• RH neutrino accommodated in the model

• Natural for seesaw: offer both ingredients, i.e. RH neutrino & heavy 
scale  neutrino oscillation strongly support SO(10)!!

• Quark & Leptons reside in the same GUT multiplets

• One set of Yukawa coupling for a given GUT multiplet

➡ SO(10) relates quarks and leptons (intra-family relations)

➡ reduce # of parameters in Yukawa sector

M =




A B B
B C D
B D C





∼
√

∆m2
12/∆m2

31

∼ ∆m2
12/∆m2

31

heavy neutrino mass: M ∼MR

" mD

16 = 5 + 10 + 1

1
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∼
√
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12/∆m2

31

∼ ∆m2
12/∆m2

31

heavy neutrino mass: M ∼MR

" mD

16 = 5 + 10 + 1

νR

1

26

SO(10) Grand Unification

• Matter unification:

All 15 known fermions

and the RH neutrino

are unified into one

single spinor

representation

• RH neutrino has a

natural place in the

theory!!

• Charge quantization

explained

16 = ( 3, 2, 1/6 )  ~     u  u   u

                                   d   d  d

      + ( 3*, 1, -2/3 ) ~ ( uc  uc  uc )

      + ( 3*, 1, 1/3 )  ~ ( dc  dc  dc )

      + ( 1, 2, -1/2 )  ~     !

                                      e

      + ( 1, 1, 1 )      ~   ec

      + ( 1, 1, 0 )      ~   !c



Models Based on SUSY SO(10)
• large neutrino mixing from neutrino sector

SO(10) GUT + SU(2) family symmetry

• symmetric mass matrices:

12 parameters accommodate 22 fermion masses, mixing angles and CP 
phases in both quark and lepton sectors

• prediction for θ13:
UMNS = U†

e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1)⇒ LMA

1

33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)

M.-C.C & K.T. Mahanthappa

SO(10) → SU(4) x SU(2)L x SU(2)R

            → SU(3) x SU(2)L x U(1)Y

30

Fermion masses in SO(10)

Left-right symmetry breaking route:

             SO(10)  ! SU(4) " SU(2)L " SU(2)R

                           ! SU(3) " SU(2)L " U(1)Y

# symmetric mass matrices

# Intra-family mass relations:

    Up-type quarks $ Dirac neutrinos

Down-type quarks $ charged leptons

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

seesaw ⇒ Mν ∼




0 0 ∗
0 1 1
∗ 1 1





MT
d = Me ∼




∗ ∗ ∗
∗ ∗ 1
∗ ∗ 1





1

€ 

UMNS =Ue,L
+ Uν ,L

Barbieri, Hall, Raby, Romanino; ...

continuous family symmetries:
to get bi-maximal (TBM) ⇒

specific values for parameters 
(couplings) 



Tri-bimaximal Neutrino Mixing

• Neutrino mass matrices:

• S3
• D4
• µ-τ symmetry

• if      A+B = C + D

• A4
• Z3 × Z7

[Other discrete groups: Hagedorn, Lindner, Plentinger; Chen, Frigerio, Ma; 
and many others...]
recent claim: S4 unique group for TBM  [C.S. Lam, 2008] 

M =
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Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]

UTB =





√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 (4)

with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor
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Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]

UTB =





√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 (4)

with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor
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Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]

UTB =





√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 (4)

with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor

solar mixing angle NOT fixed

TBM pattern

Mohapatra, Nasri, Yu, 2006; ...

Luhn, Nasri, Ramond, 2007

Ma, ‘04; Altarelli, Feruglio, ‘06; .....

Grimus, Lavoura, 2003; ...

Fukuyama, Nishiura, ‘97; Mohapatra, Nussinov, ‘99; Ma, Raidal, ‘01; ...



Perfect Geometric Solids & Family Symmetries
Some Discrete Symmetries

solid faces vert. Plato Hindu sym.
tetrahedron 4 4 fire Agni A4

octahedron 8 6 air Vayu S4

cube 6 8 earth Prithvi S4

icosahedron 20 12 water Jal A5

dodecahedron 12 20 quintessence Akasha A5

Compare this to today’s TOE, i.e. string theory. There
are 5 consistent theories in 10 dimensions: Type I is dual
to Heterotic SO(32), Type IIA is dual to Heterotic
E8 × E8, and Type IIB is self-dual.

Lepton Family Symmetries for Neutrino Masses and Mixing back to start 9

From E. Ma, talk at 
WHEPP-9, Bangalore

A4

S4 S4

A5 A5
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Greek

Hinduism (Tattva) and

Buddhism (Mah!bh"ta)

Japanese (Godai)

Tibetan (Bön)

Medieval Alchemy

Akasha

From Wikipedia, the free encyclopedia

Akasha (or Akash, Aakaashá, #k!$a, !"#$) is the

Sanskrit word meaning "aether" in both its elemental

and mythological senses.

Contents

1 Meaning in different philosophies
1.1 Hinduism
1.2 Jainism
1.3 Buddhism
1.4 C!rv!kism
1.5 Theosophy

2 In popular culture
2.1 Literature
2.2 Music
2.3 Film
2.4 Games

3 See also
4 References
5 External links

Meaning in different philosophies

Hinduism

In Hinduism Akasha means the basis and essence of all

things in the material world; the smallest material

element created from the astral world. It is one of the

Panchamahabhuta, or "five great elements"; its main

characteristic is Shabda (sound). In Hindi and Gujarati

the meaning of Akasha is sky.[1]

The Nyaya and Vaisheshika schools of Hindu

philosophy state that Akasha or ether is the fifth physical

substance, which is the substratum of the quality of

sound. It is the One, Eternal, and All Pervading physical

Classical Elements

5/5/09 9:23 PMFile:Vayu.jpg - Wikipedia, the free encyclopedia

Page 1 of 3http://en.wikipedia.org/wiki/File:Vayu.jpg

File:Vayu.jpg

From Wikipedia, the free encyclopedia

File
File history
File links

No higher resolution available.

Vayu.jpg ! (265 " 380 pixels, file size: 47 KB, MIME type: image/jpeg)

This is a file from the Wikimedia Commons. The description on its description page there

is shown below.
Commons is a freely licensed media file repository. You can help.

Summary

Description
Tanjore painting of Vayu, Vedic god of wind, riding his deer.

Tempera on mica, original painting 23.5 X 18.5 cm. The painting now resides in Chennai

Museum.
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File:Musée Guimet 897 05.jpg

From Wikipedia, the free encyclopedia

File
File history
File links
Metadata

Size of this preview: 414 ! 600 pixels

Full resolution" (1,565 ! 2,268 pixels, file size: 1.44 MB, MIME type: image/jpeg)
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File:Prithu.jpg

From Wikipedia, the free encyclopedia

File
File history
File links

No higher resolution available.

Prithu.jpg ! (800 " 533 pixels, file size: 93 KB, MIME type: image/jpeg)

This is a file from the Wikimedia Commons. The description on its description page there

is shown below.
Commons is a freely licensed media file repository. You can help.

Copied from English Wikipedia Contributor: en:User:Redtigerxyz Description on page: Prthu chases the

goddess earth, from an illustrated manuscript of the Bhagavata Purana Indian, Pahari, about 1740 Attributed to:

Manaku, Indian, about 1700–1760

Nainsukh family, Guler, India Overall: 22 x 32.6 cm (8 11/16 x 12 13/16 in.) Image: 17.8 x 28.5 cm (7 x 11

1/4 in.) Opaque watercolor, gold and silver on paper

Classification: Paintings Type, sub-type: Page from an illustrated manuscript of the Bhagavata Purana

A man in a two-horse-chariot with an umbrella over it, aims an arrow at a cow who is running away in front.

Set in a landscape of green pastures.

The image has a red burnished border.

Museum of Fine Arts, Boston [1] (http://www.mfa.org/collections/search_art.asp?

recview=true&id=149269&coll_keywords=purana&coll_accession=&coll_name=&coll_artist=&coll_place=&coll_medium=&coll_culture=&coll_classification=&coll_credit=&coll_provenance=&coll_location=&coll_has_images=&coll_on_view=&coll_sort=0&coll_sort_order=0&coll_view=0&coll_package=0&coll_start=1)

This is a faithful photographic reproduction of an original two-dimensional work of art. The work of art

itself is in the public domain for the following reason:

This image (or other media file) is in the public domain because its copyright has expired.

This applies to the United States, Australia, the European Union and those countries with a

copyright term of life of the author plus 70 years.



Non-abelian Finite Family Symmetry

• TBM mixing matrix: can be realized in finite group family 
symmetry based on A4 

• even permutations of 4 objects 
S: (1234) → (4321)
T: (1234) → (2314)

• invariance group of  Tetrahedron

• orbifold compactification:
               6D → 4D on T2/Z2

• Deficiencies:

• does NOT give rise to CKM mixing:    Vckm = 1

• does NOT explain mass hierarchy

• all CG coefficients real

Ma & Rajasekaran, ‘01

The vertices of a cube can be grouped into

two groups of four, each forming a regular

tetrahedron (see above, and also animation,

showing one of the two tetrahedra in the

cube). The symmetries of a regular

tetrahedron correspond to half of those of a

cube: those which map the tetrahedrons to

themselves, and not to each other.

The tetrahedron is the only Platonic solid

that is not mapped to itself by point

inversion.

The regular tetrahedron has 24 isometries,

forming the symmetry group Td,

isomorphic to S4. They can be categorized

as follows:

T, isomorphic to alternating group A4 (the identity and 11 proper rotations) with the following conjugacy

classes (in parentheses are given the permutations of the vertices, or correspondingly, the faces, and the
unit quaternion representation):

identity (identity; 1)
rotation about an axis through a vertex, perpendicular to the opposite plane, by an angle of ±120°:
4 axes, 2 per axis, together 8 ((1 2 3), etc.; (1±i±j±k)/2)
rotation by an angle of 180° such that an edge maps to the opposite edge: 3 ((1 2)(3 4), etc.; i,j,k)

reflections in a plane perpendicular to an edge: 6
reflections in a plane combined with 90° rotation about an axis perpendicular to the plane: 3 axes, 2 per
axis, together 6; equivalently, they are 90° rotations combined with inversion (x is mapped to !x): the
rotations correspond to those of the cube about face-to-face axes

The isometries of irregular tetrahedra

The isometries of an irregular tetrahedron depend on the geometry of the tetrahedron, with 7 cases possible. In

each case a 3-dimensional point group is formed.

An equilateral triangle base and isosceles (and non-equilateral) triangle sides gives 6 isometries,
corresponding to the 6 isometries of the base. As permutations of the vertices, these 6 isometries are the
identity 1, (123), (132), (12), (13) and (23), forming the symmetry group C3v, isomorphic to S3.

Four congruent isosceles (non-equilateral) triangles gives 8 isometries. If edges (1,2) and (3,4) are of
different length to the other 4 then the 8 isometries are the identity 1, reflections (12) and (34), and 180°
rotations (12)(34), (13)(24), (14)(23) and improper 90° rotations (1234) and (1432) forming the
symmetry group D2d.

Four congruent scalene triangles gives 4 isometries. The isometries are 1 and the 180° rotations (12)(34),

(13)(24), (14)(23). This is the Klein four-group V4 ! Z2
2, present as the point group D2.

Two pairs of isomorphic isosceles (non-equilateral) triangles. This gives two opposite edges (1,2) and
(3,4) that are perpendicular but different lengths, and then the 4 isometries are 1, reflections (12) and
(34) and the 180° rotation (12)(34). The symmetry group is C2v, isomorphic to V4.

Two pairs of isomorphic scalene triangles. This has two pairs of equal edges (1,3), (2,4) and (1,4), (2,3)
but otherwise no edges equal. The only two isometries are 1 and the rotation (12)(34), giving the group

The proper rotations and reflections in the symmetry group of the

regular tetrahedron

Altarelli, Feruglio, ‘06



The Double Tetrahedral T′ Symmetry 

• consider double covering of A4

• Classified as a candidate family symmetry that can arise from Type-II B 
String theories

• can account for quark sector:

• Combined with GUT:   T′ x SU(5) GUT

• only 9 operators allowed: highly predictive model

• all 22 masses, mixing angles (CKM & MNS) and CPV measures are 
“accommodated”

• lepton mixing

• CPV in quark and lepton sectors    

✴ In RS warped extra dimension: prevent tree-level FCNCs in both 
quark and lepton sectors

exist in A4:  1,  1′,  1″, 3

not in A4:    2,  2′,  2″

TBM for neutrinos

2 +1 assignments for quarks

M.-C.C & K.T. Mahanthappa
Phys. Lett. B652, 34 (2007)

Carr, Frampton, ‘07; Feruglio, Hedgedorn, Lin, Merlo, ‘07

Frampton, Kaphart, 1995, 2001

} CG coefficients of T′ & SU(5)
⇒ pure geometrical in origin!

M.-C.C, K.T. Mahanthappa, F. Yu, arXiv:0907.3963 



Group Theory of T′

• generators:

• generators:  in 3-dim representations, T-diagonal basis

★ complex CG coefficients in T′           

• spinorial x spinorial ⊃ vector:

• spinorial x vector ⊃ spinorial:
2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

1

J. Q. Chen & P. D. Fan,
 J. Math Phys 39, 5519 (1998) 

complexity cannot be avoided 
by different basis choice

UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

UMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





S2 = T 3 = (ST )3 = 1

S2 = R, T 3 = 1, (ST )3 = 1, R2 = 1

1

R=1:    1,  1′,  1″, 3  (vector)
R= -1:   2,  2′,  2″     (spinorial)
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A Novel Origin of CP Violation

Mu-Chun Chen1, ∗ and K.T. Mahanthappa2, †

1Department of Physics & Astronomy, University of California, Irvine, CA 92697-4575, USA
2Department of Physics, University of Colorado at Boulder, Boulder, CO 80309-0390, USA

(Dated: April 9, 2009)

We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP
violation. This is manifest in our model based on SU(5) combined with the double tetrahedral group
T ′ as the family symmetry. Due to the presence of the doublet representations in T ′, there exist
complex CG coefficients, leading to explicit CP violation in the model, while the Yukawa couplings
and the vacuum expectation values of the scalar fields remain real. The predicted CP violation
measures in the quark sector are consistent with the current experimental data. The leptonic Dirac
CP violating phase, δ!, is predicted to be ∼ − cos−1(2/3), which turns out to be the value needed
to account for the difference between the experimental best fit value for the solar mixing angle and
the tri-bimaximal mixing matrix prediction. The existence of a non-vanishing leptonic Dirac CP
phase may be relevant for the generation of the baryonic asymmetry in the universe.

The origin of the cosmological matter antimatter
asymmetry in the universe is one of the fundamental
questions that still remain to be answered. It has long
been known that in order to generate the baryonic asym-
metry, three conditions [1] must be satisfied, i.e. baryon
and lepton number violations, CP violation and out-
of-equilibrium decay. Given the evidence that our uni-
verse is expanding, the out-of-equilibrium condition can
be simply satisfied. In most extensions of the Standard
Model, such as grand unified theories, there naturally ex-
ist processes that violate baryon and/or lepton numbers.
Due to the small quark mixing, the complex phase in
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
generate a baryonic asymmetry that is roughly 18 orders
of magnitude smaller than the observed value [2]. The ob-
servation of neutrino oscillation, on the other hand, opens
up the possibility of generating the baryonic asymmetry
through leptogenesis [3]. The success of leptogenesis cru-
cially depends on the existence of CP violating phases in
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
that describes the neutrino mixing [4].

Generally, CP violation can arise either explicitly
through complex Yukawa coupling constants, or sponta-
neously through the complex vacuum expectation values
(VEVs) of the Higgs fields, or a combination of both.
In these two scenarios, the complex phases appear to be
free parameters, adding to the list of parameters in the
Yukawa sector that accommodate the observed fermion
masses, mixing angles and CP violation measures.

In this letter, we propose the complex Clebsch-Gordon
(CG) coefficients as a new origin of CP violation. Such
complex CG coefficients exist in the double tetrahedral
group, T ′. In this scenario, CP violation occurs explicitly
from the CG coefficients of the T ′ group theory, while the
Yukawa coupling constants and the VEVs of the scalar
fields remain real. As a result, the amount of CP vio-
lation in our model is determined entirely by the group
theory, unlike in the usual scenarios.

Experimentally, the best fit values for the neutrino

mixing angles are very close to the prediction of the tri-
bimaximal mixing (TBM) matrix [5],

UTBM =





√

2/3
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1/3 0
−

√

1/6
√

1/3 −
√

1/2
−

√

1/6
√

1/3
√

1/2



 (1)

which predicts sin2 θatm = 1/2, tan2 θ# = 1/2 and
sin θ13 = 0. It has been realized the the TBM matrix
can arise from an underlying A4 symmetry [6]. Never-
theless, A4 does not give rise to quark mixing [7]. Even
though the exact TBM matrix does not give rise to CP
violation, due to the correction from the charged lepton
sector in our model, as we will show, leptonic CP viola-
tion can still arise.

Group Theory of T ′.—The finite group T ′ is the double
covering group of the tetrahedral group, A4. It has 24
elements, and is generated by two generators, S and T .
In the T diagonal basis, these two generators in the triplet
representation are given by,

S =
1

3





−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1



 , T =





1 0 0
0 ω 0
0 0 ω2



 , (2)

with ω = e2iπ/3. While all CG coefficients can be chosen
to be real in A4, this is not the case in T ′, which has
three doublet representations, 2, 2′, 2′′, in addition to
the triplet, 3, and three singlet representations, 1, 1′, 1′′,
that exist in A4. In the basis of Eq. 2, the complex CG
coefficients appear in the products of the doublets with
the triplet representations, 2 ⊗ 3, 2′ ⊗ 3 and 2′′ ⊗ 3 [8].

The Model.—In Ref. [9], we have constructed a SU(5)
model combined with a family symmetry based on T ′,
which simultaneously gives rise to the tri-bimaximal neu-
trino mixing and realistic CKM quark mixing [10]. (T ′

has also been utilized by others [11].) The field content
of our model is summarized in Table I. Note that since
all fields in a full SU(5) multiplet transform in the same
way under the T ′ symmetry, our model is free of discrete
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We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP
violation. This is manifest in our model based on SU(5) combined with the double tetrahedral group
T ′ as the family symmetry. Due to the presence of the doublet representations in T ′, there exist
complex CG coefficients, leading to explicit CP violation in the model, while the Yukawa couplings
and the vacuum expectation values of the scalar fields remain real. The predicted CP violation
measures in the quark sector are consistent with the current experimental data. The leptonic Dirac
CP violating phase, δ!, is predicted to be ∼ − cos−1(2/3), which turns out to be the value needed
to account for the difference between the experimental best fit value for the solar mixing angle and
the tri-bimaximal mixing matrix prediction. The existence of a non-vanishing leptonic Dirac CP
phase may be relevant for the generation of the baryonic asymmetry in the universe.

The origin of the cosmological matter antimatter
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been known that in order to generate the baryonic asym-
metry, three conditions [1] must be satisfied, i.e. baryon
and lepton number violations, CP violation and out-
of-equilibrium decay. Given the evidence that our uni-
verse is expanding, the out-of-equilibrium condition can
be simply satisfied. In most extensions of the Standard
Model, such as grand unified theories, there naturally ex-
ist processes that violate baryon and/or lepton numbers.
Due to the small quark mixing, the complex phase in
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
generate a baryonic asymmetry that is roughly 18 orders
of magnitude smaller than the observed value [2]. The ob-
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up the possibility of generating the baryonic asymmetry
through leptogenesis [3]. The success of leptogenesis cru-
cially depends on the existence of CP violating phases in
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
that describes the neutrino mixing [4].

Generally, CP violation can arise either explicitly
through complex Yukawa coupling constants, or sponta-
neously through the complex vacuum expectation values
(VEVs) of the Higgs fields, or a combination of both.
In these two scenarios, the complex phases appear to be
free parameters, adding to the list of parameters in the
Yukawa sector that accommodate the observed fermion
masses, mixing angles and CP violation measures.

In this letter, we propose the complex Clebsch-Gordon
(CG) coefficients as a new origin of CP violation. Such
complex CG coefficients exist in the double tetrahedral
group, T ′. In this scenario, CP violation occurs explicitly
from the CG coefficients of the T ′ group theory, while the
Yukawa coupling constants and the VEVs of the scalar
fields remain real. As a result, the amount of CP vio-
lation in our model is determined entirely by the group
theory, unlike in the usual scenarios.

Experimentally, the best fit values for the neutrino
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which predicts sin2 θatm = 1/2, tan2 θ# = 1/2 and
sin θ13 = 0. It has been realized the the TBM matrix
can arise from an underlying A4 symmetry [6]. Never-
theless, A4 does not give rise to quark mixing [7]. Even
though the exact TBM matrix does not give rise to CP
violation, due to the correction from the charged lepton
sector in our model, as we will show, leptonic CP viola-
tion can still arise.

Group Theory of T ′.—The finite group T ′ is the double
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elements, and is generated by two generators, S and T .
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with ω = e2iπ/3. While all CG coefficients can be chosen
to be real in A4, this is not the case in T ′, which has
three doublet representations, 2, 2′, 2′′, in addition to
the triplet, 3, and three singlet representations, 1, 1′, 1′′,
that exist in A4. In the basis of Eq. 2, the complex CG
coefficients appear in the products of the doublets with
the triplet representations, 2 ⊗ 3, 2′ ⊗ 3 and 2′′ ⊗ 3 [8].

The Model.—In Ref. [9], we have constructed a SU(5)
model combined with a family symmetry based on T ′,
which simultaneously gives rise to the tri-bimaximal neu-
trino mixing and realistic CKM quark mixing [10]. (T ′
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all fields in a full SU(5) multiplet transform in the same
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A Novel Origin of CP Violation

• Conventionally:

• Explicit CP violation: complex Yukawa couplings

• Spontaneous CP violation: complex Higgs VEVs

★ complex CG coefficients in T′  ⇒ explicit CP violation

• real Yukawa couplings, real Higgs VEVs

• CP violation in both quark and lepton sectors determined by 
complex CG coefficients 

• no additional parameters needed ⇒ extremely predictive model!!

M.-C.C., K.T. Mahanthappa, arXiv:0904.1721



Tri-bimaximal Mixing from Family Symmetry

• fermion charge assignments:

• SM Higgs ~ singlet under T′

• operator for neutrino masses: 

• TBM neutrino mixing from CG coefficients

• charged lepton mass matrix in non-GUT model: diagonal

• in SU(5) model: corrections to TBM due to GUT relations 

• corrections at leading order in terms of θc and CG only
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
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1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H ′
5
FT3ζψψ′ in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and φ0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed. The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 × Z ′
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 × Z ′
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, ∆45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in Lν give the following neutrino mass matrix [3], which is invariant under

GTST2 [10],

Mν =
λv2

Mx











2ξ0 + u −ξ0 −ξ0

−ξ0 2ξ0 u − ξ0

−ξ0 u − ξ0 2ξ0











, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

Mν is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
ν MνVν = diag(u + 3ξ0, u, −u + 3ξ0)

v2
u

Mx
, (14)

where the diagonalization matrix Vν is the tri-bimaximal mixing matrix, Vν = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H ′
5
FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the τ mass, is generated upon the breaking of (d)T → GT and (d)T → GS. As mb and mτ
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Form diagonalizable!

-- no adjustable parameters
-- neutrino mixing from CG 
coefficients!

General conditions for Form Diagonalizablility 
in seesaw: M.-C. C, S. F. King, 2009

M.-C.C & K.T. Mahanthappa
Phys. Lett. B652, 34 (2007); arXiv:0904.1721



Quark and Lepton Mixing Matrices
• CKM mixing matrix:

• MNS matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
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√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

1

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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leptonic Dirac CP phase ⇐ complex CGnew QLC relation!

Georgi-Jarlskog relations ⇒ Vd,L ≠ I
SU(5) ⇒ Md = (Me)T

⇒ corrections to TBM related to θc
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The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 " 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o

0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J! = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o

1.31× 10−5e−i45o

0.0823ei41.8o

0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ" = 0.419, |Ue3| = 0.0583 (54)

tan2 θ" " tan2 θ",TBM +
1
2
θc cos δ (55)

4

M.-C.C & K.T. Mahanthappa
Phys. Lett. B652, 34 (2007); 
arXiv:0904.1721



lepton mixing quark mixing

parameter Best-fit value 3σ range
θ12 33.2o 28.7o − 38.1o

θ23 45o 35.7o − 55.6o

θ13 2.6o 0− 12.5o

parameter Best-fit value 3σ range
θc 12.88o 12.75o − 13.01o

θq
23 2.36o 2.25o − 2.48o

θq
13 0.21o 0.17o − 0.25o

1
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parameter Best-fit value 3σ range
θc 12.88o 12.75o − 13.01o

θq
23 2.36o 2.25o − 2.48o

θq
13 0.21o 0.17o − 0.25o

1

parameter Best-fit value 3σ range
θ12 33.2o 28.7o − 38.1o

θ23 45o 35.7o − 55.6o

θ13 2.6o 0− 12.5o

parameter Best-fit value 3σ range
θc 12.88o 12.75o − 13.01o

θq
23 2.36o 2.25o − 2.48o

θq
13 0.21o 0.17o − 0.25o

θ12 + θc = 45o

1

quark-lepton complementarity relation

quark-lepton unification?

RG effects:   Δθc ~ θc4

MSSM:      normal hierarchy Δθ12 < 0.1o
Schmidt & Smirnov, ‘06

Motivate measurements of neutrino mixing angles to at least the 
accuracy of the measured quark mixing angles

Raidal, ‘04; Smirnov & 
Minakata, ’04

more generally:

Quark-Lepton Complementarity 

5

! Large mixings
from CL and ! sectors?

Example: "23
l = "12

! = #/4, perturbations from CL sector

(can be connected with textures)  (Niehage, Winter, 2008)

! Another example: QLC+Flavor symmetries
lead e.g. to     

Modern QLC scenarios do not have an exact factor k=1 there (depends on model)
(e.g. Plentinger, Seidl, Winter, 2008; see also: Frampton, Matsuzaki, 2008)

Some other examples

"23 ~ #/4 + ("13)
2/2"23 ~ #/4 – ("13)

2/2

" "13 > 0.1, $CP ~ 0" "13 > 0.1, $CP ~ #

"12 ~ #/4 – "13 cos $CP"12 ~ #/4 + "13 cos $CP

"13
l dominates"12

l dominates

$CP and

octant

discriminate

these 

examples!

k as performance indicator 

for QLC models
k

Plentinger, Seidl, Winter, 08; Frampton, Matsuzaki, 08; 
King 05; King Antusch, 05



Numerical Results
• diagonalization matrix for charged leptons: 

• MNS Matrix:

• neutrino masses: using best fit values for ∆m2  2  parameters in 
neutrino sector

prediction for Dirac CP phase:  δ = 227 degrees

Note that these predictions do NOT depend on u0 and ξ0

4

λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These
values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
sum rule [9, 17] between the solar neutrino mixing angle
and the Cabibbo angle in the quark sector,

tan2 θ! ! tan2 θ!,TBM −
1

2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numeri-
cally, the diagonalization matrix for the charged leptons
is,







0.997ei177o

0.08ei132o

1.2 × 10−5e−i45o

0.08ei41.9o

0.997ei177o

1.40 × 10−4e−i3.47o

10−6 1.4 × 10−4 1






. (33)

This leads to small deviation from the TBM pattern, giv-
ing

VPMNS =







0.837e−i179o

0.544e−i173o

0.0566ei138o

0.364e−i3.86o

0.609e−i173o

0.705ei3.45o

0.408ei180o

0.577 0.707






,

(34)
which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These
values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
sum rule [9, 17] between the solar neutrino mixing angle
and the Cabibbo angle in the quark sector,

tan2 θ! ! tan2 θ!,TBM −
1

2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numeri-
cally, the diagonalization matrix for the charged leptons
is,







0.997ei177o
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1.2 × 10−5e−i45o

0.08ei41.9o

0.997ei177o

1.40 × 10−4e−i3.47o
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. (33)

This leads to small deviation from the TBM pattern, giv-
ing
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,

(34)
which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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3 mixing angles, 3 CP Phases;
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Neutrino Mass Sum Rule

• sum rule among three neutrino masses:

• including CP violation: 

• leads to sum rule

• constraint on Majorana phases: 

• mass sum rule:

➡ large neutrino-less double beta decay matrix element

➡ large sum of three absolute masses (cosmology)

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′′, τR ∼ 1′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′µR(1′′) + ($φ)1′′τR(1′)

φ ∼ 3

m1 −m3 = 2m2

1

On mass constraint m1 −m3 = 2m2:

The VEV’s u0 and ξ0 are complex. Let’s define the relative phase between
them as θ and rewrite the three masses as

m1 = u0 + 3ξ0e
iθ (1)

m2 = u0 (2)

m3 = −u0 + 3ξ0e
iθ (3)

(note that I have absorbed the factor v2
u/Λ into u0 and ξ0). The masses are

thus determined by three real parameters, ξ0, u0 and θ. Then

|m1|2 = u2
0 + 9ξ2

0 − 6u0ξ0 cos θ (4)

|m2|2 = u2
0 (5)

|m3|2 = u2
0 + 9ξ2

0 + 6u0ξ0 cos θ (6)

The two mass squared differences are

∆m2
atm ≡ |m3|2 − |m1|2 = −12u0ξ0 cos θ (7)

∆m2
! ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 cos θ (8)

which leads to the sum rule

∆m2
! = −9ξ2

0 +
1

2
∆m2

atm (9)

From the fact that ∆m2
! > 0, it follows that ∆m2

atm has to be positive,
implying normal hierarchy (including near degenerate case with |m3| > |m1|)
in the atmospheric sector. It also gives the constraint

0 > cos θ > −3

2

ξ0

u0
(10)

(compare Altarelli statement in hep-ph/0512103 on p12.)
We can of course chose another set of three parameters, ∆m2

atm, r ≡
∆m2

!/∆m2
atm and θ. The absolute values of the VEV’s are then given by

ξ0 =
1

3

√

(
1

2
− r)∆m2

atm (11)

u0 = − 1

4 cos θ

√√√√∆m2
atm

(1
2 − r)

(12)

1

On mass constraint m1 −m3 = 2m2:

The VEV’s u0 and ξ0 are complex. Let’s define the relative phase between
them as θ and rewrite the three masses as

m1 = u0 + 3ξ0e
iθ (1)

m2 = u0 (2)

m3 = −u0 + 3ξ0e
iθ (3)

(note that I have absorbed the factor v2
u/Λ into u0 and ξ0). The masses are

thus determined by three real parameters, ξ0, u0 and θ. Then

|m1|2 = u2
0 + 9ξ2

0 − 6u0ξ0 cos θ (4)

|m2|2 = u2
0 (5)

|m3|2 = u2
0 + 9ξ2

0 + 6u0ξ0 cos θ (6)

The two mass squared differences are

∆m2
atm ≡ |m3|2 − |m1|2 = −12u0ξ0 cos θ (7)

∆m2
! ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 cos θ (8)

which leads to the sum rule

∆m2
! = −9ξ2

0 +
1

2
∆m2

atm (9)

From the fact that ∆m2
! > 0, it follows that ∆m2

atm has to be positive,
implying normal hierarchy (including near degenerate case with |m3| > |m1|)
in the atmospheric sector. It also gives the constraint

0 > cos θ > −3

2

ξ0

u0
(10)

(compare Altarelli statement in hep-ph/0512103 on p12.)
We can of course chose another set of three parameters, ∆m2

atm, r ≡
∆m2

!/∆m2
atm and θ. The absolute values of the VEV’s are then given by

ξ0 =
1

3

√

(
1

2
− r)∆m2

atm (11)

u0 = − 1

4 cos θ

√√√√∆m2
atm

(1
2 − r)

(12)

1

On mass constraint m1 −m3 = 2m2:

The VEV’s u0 and ξ0 are complex. Let’s define the relative phase between
them as θ and rewrite the three masses as

m1 = u0 + 3ξ0e
iθ (1)

m2 = u0 (2)

m3 = −u0 + 3ξ0e
iθ (3)

(note that I have absorbed the factor v2
u/Λ into u0 and ξ0). The masses are

thus determined by three real parameters, ξ0, u0 and θ. Then

|m1|2 = u2
0 + 9ξ2

0 − 6u0ξ0 cos θ (4)

|m2|2 = u2
0 (5)

|m3|2 = u2
0 + 9ξ2

0 + 6u0ξ0 cos θ (6)

The two mass squared differences are

∆m2
atm ≡ |m3|2 − |m1|2 = −12u0ξ0 cos θ (7)

∆m2
! ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 cos θ (8)

which leads to the sum rule

∆m2
! = −9ξ2

0 +
1

2
∆m2

atm (9)

From the fact that ∆m2
! > 0, it follows that ∆m2

atm has to be positive,
implying normal hierarchy (including near degenerate case with |m3| > |m1|)
in the atmospheric sector. It also gives the constraint

0 > cos θ > −3

2

ξ0

u0
(10)

(compare Altarelli statement in hep-ph/0512103 on p12.)
We can of course chose another set of three parameters, ∆m2

atm, r ≡
∆m2

!/∆m2
atm and θ. The absolute values of the VEV’s are then given by

ξ0 =
1

3

√

(
1

2
− r)∆m2

atm (11)

u0 = − 1

4 cos θ

√√√√∆m2
atm

(1
2 − r)

(12)

1

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′′, τR ∼ 1′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′µR(1′′) + ($φ)1′′τR(1′)

φ ∼ 3

m1 −m3 = 2m2

∆m2
atm > 0

1

normal hierarchy
predicted!!

On mass constraint m1 −m3 = 2m2:

The VEV’s u0 and ξ0 are complex. Let’s define the relative phase between
them as θ and rewrite the three masses as

m1 = u0 + 3ξ0e
iθ (1)

m2 = u0 (2)

m3 = −u0 + 3ξ0e
iθ (3)

(note that I have absorbed the factor v2
u/Λ into u0 and ξ0). The masses are

thus determined by three real parameters, ξ0, u0 and θ. Then

|m1|2 = u2
0 + 9ξ2

0 − 6u0ξ0 cos θ (4)

|m2|2 = u2
0 (5)

|m3|2 = u2
0 + 9ξ2

0 + 6u0ξ0 cos θ (6)

The two mass squared differences are

∆m2
atm ≡ |m3|2 − |m1|2 = −12u0ξ0 cos θ (7)

∆m2
! ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 cos θ (8)

which leads to the sum rule

∆m2
! = −9ξ2

0 +
1

2
∆m2

atm (9)

From the fact that ∆m2
! > 0, it follows that ∆m2

atm has to be positive,
implying normal hierarchy (including near degenerate case with |m3| > |m1|)
in the atmospheric sector. It also gives the constraint

0 > cos θ > −3

2

ξ0

u0
(10)

(compare Altarelli statement in hep-ph/0512103 on p12.)
We can of course chose another set of three parameters, ∆m2

atm, r ≡
∆m2

!/∆m2
atm and θ. The absolute values of the VEV’s are then given by

ξ0 =
1

3

√

(
1

2
− r)∆m2

atm (11)

u0 = − 1

4 cos θ

√√√√∆m2
atm

(1
2 − r)

(12)

1



Models with Tri-bimaximal Neutrino Mixing

Therefore the TB mixing of eq. (2) is reproduced, at the leading order. For the neutrino

masses we obtain:

|m1|2 =

[

−r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm

|m2|2 =
1

8 cos2 ∆(1 − 2r)
∆m2

atm

|m3|2 =

[

1 − r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm , (22)

where r ≡ ∆m2
sol/∆m2

atm ≡ (|m2|2 − |m1|2)/(|m3|2 − |m1|2), ∆m2
atm ≡ |m3|2 − |m1|2 and

∆ is the phase difference between the complex numbers a and b. For cos ∆ = −1, we have
a neutrino spectrum close to hierarchical:

|m3| ≈ 0.053 eV , |m1| ≈ |m2| ≈ 0.017 eV . (23)

In this case the sum of neutrino masses is about 0.087 eV. If cos ∆ is accidentally small, the
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Figure 1: On the left panel, sum of neutrino masses versus cos∆, the phase difference between a and
b. On the right panel, the lightest neutrino mass, m1 and the mass combination mee versus cos∆. To
evaluate the masses, the parameters |a| and |b| have been expressed in terms of r ≡ ∆m2

sol/∆m2
atm ≡

(|m2|2 − |m1|2)/(|m3|2 − |m1|2) and ∆m2
atm ≡ |m3|2 − |m1|2. The bands have been obtained by varying

∆m2
atm in its 3σ experimental range, 0.0020 eV ÷ 0.0032 eV. There is a negligible sensitivity to the

variations of r within its current 3 σ experimental range, and we have realized the plots by choosing
r = 0.03.

neutrino spectrum becomes degenerate. The value of |mee|, the parameter characterizing
the violation of total lepton number in neutrinoless double beta decay, is given by:

|mee|2 =

[

−
1 + 4r

9
+

1

8 cos2 ∆(1 − 2r)

]

∆m2
atm . (24)
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Effective mass for neutrinoless double beta decay vs.

neutrino mass scale for normal and inverted hierarchy

Inverted hierarchy

is TESTABLE

Normal hierarchy is

NOT TESTABLE

from: F. Feruglio, A. Strumia, F. Vissani ('02)

Approx. degeneracy

is TESTABLE

experiment

cosmo

future

prediction in 
A4 and T′ models

For A4:  Altarelli et al, 2006



        TBM           Leptogenesis
• TBM from broken discrete symmetries  through type-I seesaw

➡ exact TBM mixing

➡ no leptogenesis as 

➡ true even when flavor effects included

• corrections to TBM pattern due to high dim operators

• SU(5) x T′ model: corrections to TBM from charged lepton sector

• without flavor effects ⇒ ε = 0

• with flavor effects ⇒ ε~10-6 right amount for leptogenesis

• Dirac phase the only non-vanishing leptonic CPV phase
⇒ connection between leptogenesis & low energy CPV

E. Jenkins, A. Manohar, 2008
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Distinguishing Models

• Predictions for θ13

•

C.  Albright & M.-C.C, 2006
Model Predictions
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FIG. 3: Histograms of the number of models for each sin2 θ13 where the upper diagram includes models

that predict normal mass hierarchy, while the lower diagram includes models that predict inverted mass

hierarchy.
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FIG. 3: Histograms of the number of models for each sin2 θ13 where the upper diagram includes models

that predict normal mass hierarchy, while the lower diagram includes models that predict inverted mass

hierarchy.
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C.  Albright & M.-C.C, 
Phys. Rev. D74 (2006) 113006

Model Predictions C.  Albright & M.-C.C, 
Phys. Rev. D74 (2006) 113006
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FIG. 1: Histogram of the number of models for each sin2 θ13 including all 63 models.
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Mu-Chun Chen                            Models of Neutrino Mass and Their Predictions

Predictions of all 46 models for 1-3 mixing:
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LFV Rare Processes 

LFV Rare Processes
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FIG. 11: Branching ratio predictions for µ − e conversion vs. branching ratio predictions for µ → e + γ in

the five models considered. The more restrictive WMAP dark matter constraints apply for the thick line

segments shown.

Zeff = 17.6 and the nuclear form factor is F (q2 # −m2
µ) # 0.54 [30]. In the case of the conversion

process, we have explicitly carried out the full evolution running from the GUT scale to the Z

scale. The µ − e conversion branching ratio is then obtained from the conversion rate above by

scaling it with the µ capture rate on T i, which is quoted in [38] as (2.590± 0.012)× 106 sec−1 with

the present experimental limit on the conversion branching ratio found to be R ≤ 4 × 10−12.

In Fig. 11. we show a plot of the µ − e conversion branching ratio vs. the µ → eγ branching

ratio for each of the five models considered. We have limited the line segments by applying the

WMAP dark matter constraints of Sect. III. It is clear that the GK and AB models would be

tested first, followed by the DR, CY and CM models. In fact, a first generation µ − e conversion

experiment may be able to reach a branching ratio of 10−17, while a second generation experiment

may lower the limit from the present value of 4 × 10−12 down to 10−18. If such proves to be the

case and no signal is seen, all five models will be eliminated. Hence the conversion experiment is

inherently more powerful than the MEG experiment looking for µ → eγ which is designed to reach

a level of 10−13−10−14, sufficient only to eliminate the GK and AB models. The caveat, of course,

is that MEG is now starting to take data, while no new conversion experiment has been approved.
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C. Albright & M.-C.C, arXiv: 0802.4228 (hep-ph)

reach at MEG experiment

sensitivity of proposed 
MECO-type exp

mu-e conversion could be 
powerful in testing 
different models

sensitivity of proposed 
MECO-type exp reach at MEG

μ-e conversion could be 
powerful in distinguishing 

different models

C.  Albright & M.-C.C, 2008

predictions for LFV processes in five viable SUSY SO(10) models:

 -- assuming MSUGRA boundary conditions
 -- including Dark Matter constraints from WMAP (lower bound on predictions)



TeV Scale Seesaw
• SM x U(1)NA + 3 νR:   charged under U(1)NA symmetry, broken by <ϕ>

• U(1)NA forbids usual dim-4 Dirac operator and dim-5 Majorana 
operator

• neutrino masses generated by very high dimensional operators

• anomaly cancellations: charges of different families of fermions related 
=> predict flavor mixing

• Through couplings to Z′: can probe neutrino sector at colliders
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Fig. 3. Schematic diagrams for Froggatt-Nielsen mechanism. Here a and b are the family indices.
(χ, χ) are the vector-like Froggatt-Nielsen fields. Figure (a): The tree level diagram generating
the mass of the third family is given; (b): The mass of the lighter matter fields generated by this
diagram is ∼ O((<θ>

M
)2); (c): Higher order diagrams generate mass ∼ O((<θ>

M
)n).

lighter matter fields are produced by higher dimensional interactions involving, in
addition to the regular Higgs fields, exotic vector-like pairs of matter fields and the
so-called flavons (flavor Higgs fields). Schematic diagrams for these interactions are
shown in Fig.3. After integrating out superheavy vector-like matter fields of mass
M , the mass terms of the light matter fields get suppressed by a factor of <θ>

M ,
where < θ > is the VEVs of the flavons and M is the UV-cutoff of the effective
theory above which the flavor symmetry is exact. When the family symmetry is
exact, only the (33) entry is non-zero. When the family symmetry is spontaneously
broken, the zero entries will be filled in at some order O(<θ>

M ). Suppose the family
symmetry allows only the (23) and (32) elements at order O(<θ>

M ),




0 0 0
0 0 0
0 0 1



 SSB

−→




0 0 0
0 0 <θ>

M

0 <θ>
M 1



 . (15)

Then a second fermion mass is generated at order O((<θ>
M )2) after the family

symmetry is spontaneous broken. The fermion mass hierarchy thus arises.
To illustrate how the Froggatt-Nielsen mechanism works, suppose there is a

vector-like pair of matter fields (χ⊕χ) with mass M and carrying the same quantum
numbers as ψR under the vertical gauge group (e.g. SM or SO(10)), but different
quantum numbers under the family symmetry. It is therefore possible to have a
Yukawa coupling yχψLH where H is the SM doublet Higgs if the family symmetry
permits such a coupling. In addition, there is a gauge singlet θ which transforms
non-trivially under the family symmetry. Suppose the coupling y

′

ψRχθ is allowed
by the family symmetry, we then obtain the following seesaw mass matrix, upon H

M.-C.C,  A. de Gouvea, B. Dobrescu, 2006

low seesaw scale achieved 
with all couplings ~ O(1)
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M.-C.C,  J.R. Huang, under preparation

Integrated Luminosity 
needed for 5σ discovery 

Integrated Luminosity 
needed for 5σ 

distinction 

lepton charges:   qe = -55/8  ,   qμ = qτ = 49/8 



Non-anomalous v.s. Anomalous U(1)

• anomaly cancellations:  relating charges of different fermions

• [U(1)]3 condition generally difficult to solve 

• most models utilized anomalous U(1): 

• mixed anomaly: cancelled by Green-Schwarz mechanism

• [U(1)]3 anomaly: cancelled by exotic fields besides RH neutrinos

• U(1) broken at fundamental string scale

• earlier claim that U(1) has to be anomalous to be compatible with 
SU(5) while giving rise to realistic fermion mass and mixing 
patterns 

• non-anomalous U(1) can be compatible with SUSY SU(5) while giving 
rise to realistic fermion mass and mixing patterns

• no exotics other than 3 RH neutrinos

• U(1) also forbids Higgs-mediated proton decay

M.-C.C,  D.R.T. Jones,  A. Rajaraman,  H.B. Yu,  2008

Gauge anomaly

From Wikipedia, the free encyclopedia

In theoretical physics, a gauge anomaly is an example of an anomaly: it is an effect of quantum mechanics—

usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge

theory.

Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to

cancel unphysical degrees of freedom with a negative norm (such as a photon polarized in the time direction).

Therefore all gauge anomalies must cancel out. This indeed happens in the Standard Model.

The term gauge anomaly is usually used for vector gauge anomalies. Another type of gauge anomaly is the

gravitational anomaly, because reparametrization is a gauge symmetry in gravitation.

Calculation of the anomaly

In vector gauge anomalies (in gauge symmetries whose gauge boson is a vector), the anomaly is a chiral

anomaly, and can be calculated exactly at one loop level, via a Feynman diagram with a chiral fermion

running in the loop (a polygon) with n external gauge bosons attached to the loop where n = 1 + D / 2 where

D is the spacetime dimension. Anomalies occur only in even spacetime dimensions. For example, the

anomalies in the usual 4 spacetime dimensions arise from triangle Feynman diagrams.

Let us look at the (semi)effective action we get after integrating over the chiral fermions. If there is a gauge

anomaly, the resulting action will not be gauge invariant. If we denote by !" the operator corresponding to an

infinitesimal gauge transformation by ", then the Frobenius consistency condition requires that

for any functional , including the (semi)effective action S where [,] is the Lie bracket. As !"S is linear in ",

we can write

where #(4) is d-form as a functional of the nonintegrated fields and is linear in ". Let us make the further

assumption (which turns out to be valid in all the cases of interest) that this functional is local (i.e. #(d)(x) only

depends upon the values of the fields and their derivatives at x) and that it can be expressed as the exterior

product of p-forms. If the spacetime Md is closed (i.e. without boundary) and oriented, then it is the boundary

of some d+1 dimensional oriented manifold Md+1. If we then arbitrarily extend the fields (including ") as

defined on Md to Md+1 with the only condition being they match on the boundaries and the expression #(d),

being the exterior product of p-forms, can be extended and defined in the interior, then
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Conclusion

• finite group family symmetry: group theoretical origin for mixing 
and CP violation

• Predictions of existing models for θ13: 0 - current bound

• Precision measurements for the θ13 and mass hierarchy can tell 
different scenarios apart:

• leptonic family symmetry vs GUT  
• inverted hierarchy, small 1-3 mixing => lepton symmetry

• large 1-3 mixing => inconclusive

• deviation from maximal θ23 may tell how symmetry is broken 

• May probe other interesting relations: e.g.
• quark-lepton complementarity: 
• new quark-lepton complementarity:

• LFV rare processes can be a robust test

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1)⇒ LMA

θ12 + θc = 45o

1

Precision Measurements Indispensable!!Precision Measurements Indispensable!!

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 " 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o

0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J! = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o

1.31× 10−5e−i45o

0.0823ei41.8o

0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ" = 0.419, |Ue3| = 0.0583 (54)

tan2 θ" " tan2 θ",TBM +
1
2
θc cos δ (55)

4


