Theory Predictions for Neutrino Oscillations

Mu-Chun Chen, University of California - Irvine

WIN 09, Relais San Clemente, Italy, September 14-19, 2009

Neutrino Mass beyond the SM

- SM: effective low energy theory with non-renormalizable terms
- new physics effects suppressed by powers of small parameter $\frac{M_W}{M}$
- neutrino masses generated by dim-5 operators

 $\frac{\lambda_{ij}}{M} HHL_i L_j \implies m_{\nu} = \lambda_{ij} \frac{v^2}{M}$ $\lambda_{ij} \text{ are dimensionless couplings; } M \text{ is some high scale}$ • m_{ν} small: non-renormalizable terms (M is high)

lowest higher dimensional operator that probes high scale physics

- total lepton number and family lepton numbers broken
 - ➡ lepton mixing and CP violation expected
 - $\Rightarrow \mu \rightarrow e \gamma$; $\tau \rightarrow \mu \gamma$; $\tau \rightarrow e \gamma$ decays; μ -e conversion

Tri-bimaximal Neutrino Mixing

Schwetz, Tortola, Valle (Aug 2008)

• Neutrino Oscillation Parameters (2σ)

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$$

 $\sin^2 \theta_{23} = 0.5^{+0.14}_{-0.12}, \quad \sin^2 \theta_{12} = 0.304^{+0.044}_{-0.032}$

• indication for non-zero θ_{I3} :

Bari group, June 2008

 $\sin^2 \theta_{13} = 0.01^{+0.016}_{-0.011} (1\sigma)$ consistent with $\theta_{13} = 0$

• Tri-bimaximal neutrino mixing: Harrison, Perkins, Scott, 1999

new KamLAND result: $\tan \theta_{\odot,exp}^2 = 0.47^{+0.06}_{-0.05}$

Neutrino Mass Spectrum

- search for absolute mass scale:
 - end point kinematic of tritium beta decays:

Tritium $\rightarrow He^3 + e^- + \overline{\nu}_e$ KATRIN: increase sensitivity ~ 0.2 eV

- WMAP + 2dFRGS + Lya: $\sum (m_{v_i}) < (0.7-1.2) \text{ eV}$
- neutrinoless double beta decay

current bound: | < m > | < (0.19 - 0.68) eV (CUORICINO, Feb 2008)

The known unknowns:

- How small is θ₁₃?
- $\theta_{23} > \pi/4, \theta_{23} < \pi/4, \theta_{23} = \pi/4?$
- Neutrino mass hierarchy (Δm_{13}^2) ?
- CP violation in neutrino oscillations?

Need for Precision Measurements

- current data post two challenges:
 - why $m_v \ll m_{u,d,l}$
 - why lepton mixing large while quark mixing small
- To answer the first question => Seesaw mechanism: most appealing scenario
- Seesaw: not sufficient to explain the whole mass matrix with mass hierarchy and two large and one small mixing angles
 - * flavor symmetry: there is a structure
 - Possible symmetries show up only in the lepton sector
 - Connection between quark and lepton sectors (GUT symmetry)
- These scenarios have drastically different predictions
- To tell these models apart: Precision measurements important

			162.11	11442.111414.2	10000	C. L. SAMETY LEVELS		
nossible	Texture	Hierarchy	$ U_{e3} $	$ \cos 2\theta_{23} $ (n.s.)	$ \cos 2\theta_{23} $	Solar Angle	Altarelli, Fe	eruglio, Masina, 02;
textures:	$\frac{\sqrt{\Delta m_{13}^2}}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$	Normal	$\sqrt{\frac{\Delta m^2_{12}}{\Delta m^2_{13}}}$	O(1)	$\sqrt{\frac{\Delta m_{12}^2}{\Delta m_{13}^2}}$	O(1)	Hall, Muray Sato, Yanag al;	yama, Weiner; ida; Barbieri et
	$\left \sqrt{\Delta m_{13}^2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \right $	Inverted	$\frac{\Delta m^2_{12}}{ \Delta m^2_{13} }$	_	$\frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$	O(1)		
	$\frac{\sqrt{\Delta m_{13}^2}}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	Inverted	$\frac{\Delta m^2_{12}}{ \Delta m^2_{13} }$	O(1)	$\frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$	$ \cos 2\theta_{12} \sim \frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$		
	$\sqrt{\Delta m_{13}^2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	Normal ^a	> 0.1	O(1)	_	O(1)		
		TRADUCTION OF	11117					
leptonic family	Symmetry breaking		θ_{13}			θ ₂₃ - π/4		R. N. Mohapatra ('04)
symmetry:	none		0			0		
	μ-τ sector only		$\sim \Delta m_{12}^2 / \Delta m_{31}^2$			$\leq 8^{o} \sim $		$\overline{\Delta m_{12}^2 / \Delta m_{31}^2}$
	e-sector only		$\sim \sqrt{\Delta m_{12}^2 / \Delta m_{31}^2}$			\leq 4 ^o $\sim \Delta$		$m_{12}^2/\Delta m_{31}^2$
	dynamical		$\sim \sqrt{\Delta m_{12}^2 / \Delta m_{31}^2}$			large		

SO(10) GUT

• RH neutrino accommodated in the model

$$16 = \overline{5} + 10 + 1$$

$$\nu_R$$

 $\overline{16} = (3, 2, 1/6) \sim \begin{bmatrix} u & u & u \\ d & d \end{bmatrix}$ $+ (3^*, 1, -2/3) \sim (u^c & u^c & u^c)$ $+ (3^*, 1, 1/3) \sim (d^c & d^c & d^c)$ $+ (1, 2, -1/2) \sim \begin{bmatrix} v \\ e \end{bmatrix}$ $+ (1, 1, 1) \sim e^c$ $+ (1, 1, 0) \sim v^c$

- Natural for seesaw: offer both ingredients, i.e. RH neutrino & heavy scale neutrino oscillation strongly support SO(10)!!
- Quark & Leptons reside in the same GUT multiplets
- One set of Yukawa coupling for a given GUT multiplet
 - \Rightarrow SO(10) relates quarks and leptons (intra-family relations)
 - reduce # of parameters in Yukawa sector

Models Based on SUSY SO(10)

large neutrino mixing from neutrino sector

 $U_{MNS} = U_{e,L}^+ U_{v,L}$

SO(10) GUT + SU(2) family symmetry Barbieri, Hall, Raby, Romanino; ...

SO(10) → SU(4) × SU(2)_L × SU(2)_R → SU(3) × SU(2)_L × U(1)_Y

symmetric mass matrices:

M.-C.C & K.T. Mahanthappa

Up-type quarks \Leftrightarrow Dirac neutrinos

Down-type quarks \Leftrightarrow charged leptons

seesaw
$$\Rightarrow M_{\nu} \sim \begin{pmatrix} 0 & 0 & * \\ 0 & 1 & 1 \\ * & 1 & 1 \end{pmatrix}$$

d

e

μ

 $SU(2)_{F}$

b

τ

ντ

12 parameters accommodate 22 fermion masses, mixing angles and CP phases in both quark and lepton sectors

prediction for θ_{13} :

$$\sin \theta_{13} \sim \left(\frac{\Delta m_{sun}^2}{\Delta m_{atm}^2}\right)^{1/2} \sim O(0.1) \Rightarrow \text{LMA}$$

continuous family symmetries: to get bi-maximal (TBM) ⇒ specific values for parameters (couplings)

SU(10)

Tri-bimaximal Neutrino Mixing

• Neutrino mass matrices:

 $M = \begin{pmatrix} A & B & B \\ B & C & D \\ B & D & C \end{pmatrix} \longrightarrow \sin^2 2\theta_{23} = 1 \qquad \theta_{13} = 0$ solar mixing angle NOT fixed

• S3 Mohapatra, Nasri, Yu, 2006; ...

- D4 Grimus, Lavoura, 2003; ...
- μ-τ symmetry Fukuyama, Nishiura, '97; Mohapatra, Nussinov, '99; Ma, Raidal, '01; ...

• if
$$A+B = C + D \longrightarrow \tan^2 \theta_{12} = 1/2$$
 TBM pattern

- A4 Ma, '04; Altarelli, Feruglio, '06;
- Z3 × Z7 Luhn, Nasri, Ramond, 2007

[Other discrete groups: Hagedorn, Lindner, Plentinger; Chen, Frigerio, Ma; and many others...]

recent claim: S4 unique group for TBM [C.S. Lam, 2008]

Perfect Geometric Solids & Family Symmetries

solid	faces	vert.	Plato	Hindu	sym.
tetrahedron	4	4	fire	Agni	A_4
octahedron	8	6	air	Vayu	S_4
cube	6	8	earth	Prithvi	S_4
icosahedron	20	12	water	Jal	A_5
dodecahedron	12	20	quintessence	Akasha	A_5

From E. Ma, talk at WHEPP-9, Bangalore

A₄

Non-abelian Finite Family Symmetry

- TBM mixing matrix: can be realized in finite group family symmetry based on A4 Ma & Rajasekaran, '01
- even permutations of 4 objects

S: $(1234) \rightarrow (4321)$ T: $(1234) \rightarrow (2314)$

- invariance group of Tetrahedron
- orbifold compactification:

 $6D \rightarrow 4D \text{ on } T_2/Z_2$

- Deficiencies:
 - does NOT give rise to CKM mixing: $V_{ckm} = I$
 - does NOT explain mass hierarchy
 - all CG coefficients real

Altarelli, Feruglio, '06

The Double Tetrahedral T' Symmetry

- consider double covering of A₄
- Classified as a candidate family symmetry that can arise from Type-II B String theories
 Frampton, Kaphart, 1995, 2001
- can account for quark sector: Carr, Frampton, '07; Feruglio, Hedgedorn, Lin, Merlo, '07

exist in A₄: 1, 1', 1", 3 \longrightarrow TBM for neutrinos not in A₄: 2, 2', 2" \longrightarrow 2 +1 assignments for quarks

- Combined with GUT: T' x SU(5) GUT
 - only 9 operators allowed: highly predictive model
 - all 22 masses, mixing angles (CKM & MNS) and CPV measures are "accommodated"
 - lepton mixing
 - CPV in quark and lepton sectors

CG coefficients of T' & SU(5) \Rightarrow pure geometrical in origin!

M.-C.C & K.T. Mahanthappa Phys. Lett. B652, 34 (2007)

 In RS warped extra dimension: prevent tree-level FCNCs in both quark and lepton sectors
 M.-C.C, K.T. Mahanthappa, F.Yu, arXiv:0907.3963

Group Theory of T'

• generators:

$$S^{2} = R, T^{3} = 1, (ST)^{3} = 1, R^{2} = 1$$

 $R^{2} = 1$
 R^{2

3

• generators: in 3-dim representations, T-diagonal basis

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2\omega & 2\omega^2 \\ 2\omega^2 & -1 & 2\omega \\ 2\omega & 2\omega^2 & -1 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$$

★ complex CG coefficients in T'

complexity cannot be avoided by different basis choice

• spinorial x spinorial \supset vector: $2 \otimes 2 = 2' \otimes 2'' = 2'' \otimes 2' = 3 \oplus 1$

$$= \begin{pmatrix} \left(\frac{1-i}{2}\right) \left(\alpha_1\beta_2 + \alpha_2\beta_1\right) \\ i\alpha_1\beta_1 \\ \alpha_2\beta_2 \end{pmatrix}$$

J. Q. Chen & P. D. Fan, J. Math Phys 39, 5519 (1998)

• spinorial x vector \supset spinorial:

$$2 \otimes 3 = 2 \oplus 2' \oplus 2'' \qquad \qquad 2 = \left(\begin{array}{c} (1+i)\alpha_2\beta_2 + \alpha_1\beta_1 \\ (1-i)\alpha_1\beta_3 - \alpha_2\beta_1 \end{array} \right)$$

A Novel Origin of CP Violation

• Conventionally:

M.-C.C., K.T. Mahanthappa, arXiv:0904.1721

- Explicit CP violation: complex Yukawa couplings
- Spontaneous CP violation: complex Higgs VEVs

- ★ complex CG coefficients in $T' \Rightarrow$ explicit CP violation
 - real Yukawa couplings, real Higgs VEVs
 - CP violation in both quark and lepton sectors determined by complex CG coefficients
 - no additional parameters needed ⇒ extremely predictive model!!

Tri-bimaximal Mixing from Family Symmetry

• fermion charge assignments:

 $\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{pmatrix}_L \sim 3, \quad e_R \sim 1, \quad \mu_R \sim 1'', \quad \tau_R \sim 1' \qquad \xi \sim 3, \quad \eta \sim 1 \qquad \langle \xi \rangle = \xi_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

• SM Higgs ~ singlet under T'

• operator for neutrino masses: $\frac{HHLL}{M} \left(\frac{\langle \xi \rangle}{\Lambda} + \frac{\langle \eta \rangle}{\Lambda} \right)$

TBM neutrino mixing from CG coefficients

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix} \qquad .V_{\nu} = U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

 $V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu} = \mathrm{diag}(u + 3\xi_0, u, -u + 3\xi_0) \frac{v_u^2}{M_x}$

Form diagonalizable!

-- no adjustable parameters
 -- neutrino mixing from CG coefficients!

General conditions for Form Diagonalizablility in seesaw: M.-C. C, S. F. King, 2009

- charged lepton mass matrix in non-GUT model: diagonal
- in SU(5) model: corrections to TBM due to GUT relations $\langle \phi \rangle = \phi_0 \Lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 - corrections at leading order in terms of θ_c and CG only

M.-C.C & K.T. Mahanthappa Phys. Lett. B652, 34 (2007); arXiv:0904.1721

Quark and Lepton Mixing Matrices

• CKM mixing matrix:

M.-C.C & K.T. Mahanthappa Phys. Lett. B652, 34 (2007); arXiv:0904.1721

Quark-Lepton Complementarity

lepton mixing

quark mixing

parameter	Best-fit value	3σ range	parameter	Best-fit value	3σ range			
θ_{12}	33.2°	$28.7^{o} - 38.1^{o}$	θ_c	12.88^{o}	$12.75^{o} - 13.01^{o}$			
θ_{23}	45^{o}	$35.7^{o} - 55.6^{o}$	$ heta_{23}^q$	2.36^{o}	$2.25^{o} - 2.48^{o}$			
$ heta_{13}$	2.6^{o}	$0 - 12.5^{o}$	$ heta_{13}^q$	0.21^{o}	$0.17^{o} - 0.25^{o}$			
$\theta_{12} + \theta$	$\theta_{12} + \theta_c = 45^o$ Raidal, '04; Smirnov & Minakata, '04			quark-lepton complementarity relation quark-lepton unification?				
more generally:								
θ_{1}	$_{12} + \theta_C \left(\underbrace{1}_{\sqrt{2}} \right)$	$\left(\frac{\theta_C}{4}\right) \simeq \frac{\pi}{4}$						
RG effe MSSM:	ects: Δθ _c ~ θ _c normal hie	⁴ rarchy Δθ ₁₂ < 0.1	 Plentinger, Seidl, Wi King 05; King Antus Schmidt & Smirne 	nter, 08; Frampton, N sch, 05 ov, '06	1atsuzaki, 08;			
Motivate measurements of neutrino mixing angles to at least the accuracy of the measured quark mixing angles								

Numerical Results

M.-C.C & K.T. Mahanthappa Phys. Lett. B652, 34 (2007); arXiv:0904.1721

• diagonalization matrix for charged leptons:

 $\left(\begin{array}{ccc} 0.997e^{i177^{o}} & 0.0823e^{i131^{o}} & 1.31 \times 10^{-5}e^{-i45^{o}} \\ 0.0823e^{i41.8^{o}} & 0.997e^{i176^{o}} & 0.000149e^{-i3.58^{o}} \\ 1.14 \times 10^{-6} & 0.000149 & 1 \end{array}\right)$ • MNS Matrix: $|m_1| = 0.0156 \text{ eV}, \quad |m_2| = 0.0179 \text{ eV}, \quad |m_3| = 0.0514 \text{ eV}$ $\begin{pmatrix} 0.838 & 0.542 & 0.0583e^{-i227^{\circ}} \\ -0.385 - 0.0345e^{i227^{\circ}} & 0.594 - 0.0224e^{i227^{\circ}} & 0.705 \\ 0.384 - 0.0346e^{i227^{\circ}} & -0.592 - 0.0224e^{i227^{\circ}} & 0.707 \end{pmatrix} \rightarrow |U_{MNS}| = \begin{pmatrix} 0.838 & 0.542 & 0.0583 \\ 0.362 & 0.610 & 0.705 \\ 0.408 & 0.577 & 0.707 \end{pmatrix}$ $\sin^2 2\theta_{atm} = 1, \quad \tan^2 \theta_{\odot} = 0.419, \quad |U_{e3}| = 0.0583$ prediction for Dirac CP phase: δ = 227 degrees $J_{\ell} = -0.00967$ Note that these predictions do NOT depend on u_0 and ξ_0 • neutrino masses: using best fit values for Δm^2 2 parameters in neutrino sector $u_0 = -0.0593, \quad \xi_0 = 0.0369, \quad M_X = 10^{14} \text{ GeV}$ $|m_1| = 0.0156 \text{ eV}, \quad |m_2| = 0.0179 \text{ eV}, \quad |m_3| = 0.0514 \text{ eV}$ predicting: 3 masses, 3 mixing angles, 3 CP Phases; $\alpha_{21} = \pi \qquad \alpha_{31} = 0.$ both $\theta_{sol} \& \theta_{atm}$ agree with exp

Neutrino Mass Sum Rule

• sum rule among three neutrino masses: $m_1 - m_3 = 2m_2$

• including CP violation:

$$m_{1} = u_{0} + 3\xi_{0}e^{i\theta} \qquad \Delta m_{atm}^{2} \equiv |m_{3}|^{2} - |m_{1}|^{2} = -12u_{0}\xi_{0}\cos\theta m_{3} = -u_{0} + 3\xi_{0}e^{i\theta} \qquad \Delta m_{\odot}^{2} \equiv |m_{2}|^{2} - |m_{1}|^{2} = -9\xi_{0}^{2} - 6u_{0}\xi_{0}\cos\theta$$

leads to sum rule

 $\Delta m_{\odot}^2 = -9\xi_0^2 + \frac{1}{2}\Delta m_{atm}^2 \longrightarrow \Delta m_{atm}^2 > 0$

normal hierarchy predicted!!

constraint on Majorana phases:

$$0 > \cos\theta > -\frac{3}{2}\frac{\xi_0}{u_0}$$

mass sum rule:

large neutrino-less double beta decay matrix element

large sum of three absolute masses (cosmology)

Models with Tri-bimaximal Neutrino Mixing

TBM \longleftrightarrow Leptogenesis

- TBM from broken discrete symmetries through type-I seesaw
 - ➡ exact TBM mixing

E. Jenkins, A. Manohar, 2008

 $\sin\theta_{13}=0 \ \Rightarrow \ J^{lep}_{CP}\propto \sin\theta_{13}=0$

CP violation through Majorana phases: α_{21} , α_{31}

- → no leptogenesis as $Im(y_D y_D^{\dagger}) = 0$
- true even when flavor effects included
- corrections to TBM pattern due to high dim operators

small symmetry breaking parameter $\eta \ll 1$:

 $\sin \theta_{13} \sim \eta \sim 10^{-2}, \ \epsilon \sim 10^{-6}$ can be generated

- SU(5) x T' model: corrections to TBM from charged lepton sector
 - without flavor effects $\Rightarrow \in = 0$ M.-C.C., K.T. Mahanthappa, under preparation
 - with flavor effects $\Rightarrow \epsilon \sim 10^{-6}$ right amount for leptogenesis
 - Dirac phase the only non-vanishing leptonic CPV phase
 - \Rightarrow connection between leptogenesis & low energy CPV

Distinguishing Models

C. Albright & M.-C.C, 2006

LFV Rare Processes

C. Albright & M.-C.C, 2008

predictions for LFV processes in five viable SUSY SO(10) models:

- -- assuming MSUGRA boundary conditions
- -- including Dark Matter constraints from WMAP (lower bound on predictions)

TeV Scale Seesaw

M.-C.C, A. de Gouvea, B. Dobrescu, 2006

- SM x U(1)_{NA} + 3 v_R : charged under U(1)_{NA} symmetry, broken by $\langle \phi \rangle$
- U(1)_{NA} forbids usual dim-4 Dirac operator and dim-5 Majorana operator HHLL

$$m_{LL} \sim \frac{HHLL}{M} \to M \sim 10^{14} \; GeV$$

• neutrino masses generated by very high dimensional operators

$$m_{LL} \sim \left(\frac{\langle \phi \rangle}{M}\right)^p \frac{HHLL}{M} \to M \sim TeV, \quad \text{for large } p \qquad \qquad \frac{\langle \phi \rangle}{M} \sim \text{not too small}$$

low seesaw scale achieved with all couplings - O(1)

- anomaly cancellations: charges of different families of fermions related
 => predict flavor mixing
- Through couplings to Z': can probe neutrino sector at colliders

LHC Potential

M.-C.C, J.R. Huang, under preparation

lepton charges: $q_e = -55/8$, $q_\mu = q_\tau = 49/8$

Integrated Luminosity needed for 5σ discovery Integrated Luminosity needed for 5σ distinction

Non-anomalous v.s. Anomalous U(1)

- anomaly cancellations: relating charges of different fermions
 - [U(1)]³ condition generally difficult to solve
- most models utilized anomalous U(1):
 - mixed anomaly: cancelled by Green-Schwarz mechanism
 - [U(1)]³ anomaly: cancelled by exotic fields besides RH neutrinos
 - U(1) broken at fundamental string scale

constraints not as stringent

- earlier claim that U(I) has to be anomalous to be compatible with SU(5) while giving rise to realistic fermion mass and mixing patterns
 L.E. Ibanez, G.G. Ross 1994
- non-anomalous U(1) can be compatible with SUSY SU(5) while giving rise to realistic fermion mass and mixing patterns
 - no exotics other than 3 RH neutrinos M.-C.C, D.R.T. Jones, A. Rajaraman, H.B.Yu, 2008
 - U(1) also forbids Higgs-mediated proton decay

Conclusion

- finite group family symmetry: group theoretical origin for mixing and CP violation
- Predictions of existing models for θ_{13} : 0 current bound
- Precision measurements for the θ_{13} and mass hierarchy can tell different scenarios apart:
 - leptonic family symmetry vs GUT
 - inverted hierarchy, small 1-3 mixing => lepton symmetry
 - large 1-3 mixing => inconclusive
- deviation from maximal θ_{23} may tell how symmetry is broken
- May probe other interesting relations: e.g.
 - quark-lepton complementarity: $\theta_{12} + \theta_c = 45^{\circ}$
 - new quark-lepton complementarity: $\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,TBM} + \frac{1}{2} \theta_c \cos \delta$
- LFV rare processes can be a robust test Precision Measurements Indispensable!!