Theory Predictions for Neutrino Oscillations

Mu-Chun Chen, University of California - Irvine

WIN 09, Relais San Clemente, Italy, September 14-19, 2009

Neutrino Mass beyond the SM

- SM: effective low energy theory with non-renormalizable terms
- new physics effects suppressed by powers of small parameter $\frac{M_{W}}{M}$
- neutrino masses generated by dim-5 operators

$$
\frac{\lambda_{i j}}{M} H H L_{i} L_{j} \quad \Rightarrow \quad m_{\nu}=\lambda_{i j} \frac{v^{2}}{M}
$$

$\lambda_{i j}$ are dimensionless couplings; M is some high scale

- m_{v} small: non-renormalizable terms (M is high)
lowest higher dimensional operator that probes high scale physics
- total lepton number and family lepton numbers broken
\Rightarrow lepton mixing and CP violation expected
$\Rightarrow \mu \rightarrow \mathrm{e} \gamma ; \tau \rightarrow \mu \gamma ; \tau \rightarrow \mathrm{e} \gamma$ decays $; \mu$ - e conversion

Tri-bimaximal Neutrino Mixing

- Neutrino Oscillation Parameters (2σ)

$$
\begin{gathered}
U_{M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{21} / 2} & 0 \\
0 & 0 & e^{i \alpha_{31} / 2}
\end{array}\right) \\
\sin ^{2} \theta_{23}=0.5_{-0.12}^{+0.14}, \quad \sin ^{2} \theta_{12}=0.304_{-0.032}^{+0.044} .
\end{gathered}
$$

- indication for non-zero θ_{13} : Bari group, June 2008

$$
\sin ^{2} \theta_{13}=0.01_{-0.011}^{+0.016}(1 \sigma) \quad \text { consistent with } \theta_{\mathrm{I} 3}=0
$$

- Tri-bimaximal neutrino mixing: Harrison, Perkins, Scott, 1999

$$
\begin{gathered}
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
\sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2
\end{gathered} \quad \sin \theta_{13, \mathrm{TBM}}=0 .
$$

Neutrino Mass Spectrum

- search for absolute mass scale:
- end point kinematic of tritium beta decays:

$$
\begin{array}{ll}
\text { Tritium } \rightarrow H e^{3}+e^{-}+\bar{\nu}_{e} & \text { Mainz: } m_{\nu}<2.2 \mathrm{eV} \\
& \text { KATRIN: increase sensitivity } \sim 0.2 \mathrm{eV}
\end{array}
$$

- WMAP + 2dFRGS + Ly $\alpha: \sum\left(m_{v_{i}}\right)<(0.7-1.2) \mathrm{eV}$
- neutrinoless double beta decay
current bound: $|<m>|<(0.19-0.68) \mathrm{eV}$ (CUORICINO, Feb 2008)

The known unknowns:

- How small is θ_{13} ?
- $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?
- Neutrino mass hierarchy $\left(\Delta \mathrm{m}_{13}{ }^{2}\right)$?
- CP violation in neutrino oscillations?

Need for Precision Measurements

- current data post two challenges:
- why $\mathrm{m}_{\mathrm{v}} \ll \mathrm{m}_{\mathrm{u}, \mathrm{d}, \mathrm{l}}$
- why lepton mixing large while quark mixing small
- To answer the first question \Rightarrow Seesaw mechanism: most appealing scenario
- Seesaw: not sufficient to explain the whole mass matrix with mass hierarchy and two large and one small mixing angles
* flavor symmetry: there is a structure
- Possible symmetries show up only in the lepton sector
- Connection between quark and lepton sectors (GUT
symmetry)
- These scenarios have drastically different predictions
- To tell these models apart: Precision measurements important
possible textures:

Texture	Hierarchy	$\left\|U_{e 3}\right\|$	$\left\|\cos 2 \theta_{23}\right\|($ n.s. $)$	$\left\|\cos 2 \theta_{23}\right\|$	Solar Angle
$\frac{\sqrt{\Delta m_{13}^{2}}}{2}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$	Normal	$\sqrt{\frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}}}$	$\mathrm{O}(1)$	$\sqrt{\frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}}}$	$\mathrm{O}(1)$
$\sqrt{\Delta m_{13}^{2}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$	Inverted	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}\right\|}$	-	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}\right\|}$	$\mathrm{O}(1)$
$\frac{\sqrt{\Delta m_{13}^{2}}}{\sqrt{2}}\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$	Inverted	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$	$\mathrm{O}(1)$	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$	$\left\|\cos 2 \theta_{12}\right\| \sim \frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$
$\sqrt{\Delta m_{13}^{2}}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$	Normal ${ }^{a}$	>0.1	$\mathrm{O}(1)$	-	$\mathrm{O}(1)$

Altarelli, Feruglio, Masina, 02; Hall, Murayama, Weiner; Sato, Yanagida; Barbieri et al; ...
leptonic family symmetry:

Symmetry breaking	θ_{13}	$\theta_{23}-\pi / 4$
none	0	0
$\mu-\tau$ sector only	$\sim \Delta m_{12}^{2} / \Delta m_{31}^{2}$	$\leq 8^{o}$

SO(ı) GUT

- RH neutrino accommodated in the model

$$
16=\overline{5}+10+1
$$

- Natural for seesaw: offer both ingredients, i.e. RH neutrino \& heavy scale neutrino oscillation strongly support SO (io)!!
- Quark \& Leptons reside in the same GUT multiplets
- One set of Yukawa coupling for a given GUT multiplet
\Rightarrow SO(ı) relates quarks and leptons (intra-family relations)
\Rightarrow reduce \# of parameters in Yukawa sector

Models Based on SUSY SO(ıo)

- large neutrino mixing from neutrino sector

$$
U_{M N S}=U_{e, L}^{+} U_{V, L}
$$

SO (10) GUT $+\mathrm{SU}(2)$ family symmetry

> Barbieri, Hall, Raby, Romanino; ...

$$
\begin{aligned}
\mathrm{SO}(10) & \rightarrow \mathrm{SU}(4) \times \mathrm{SU}(2)\left\llcorner\mathrm{SU}(2)_{\mathrm{R}}\right. \\
& \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2)\left\llcorner\times U(1)_{Y}\right.
\end{aligned}
$$

- symmetric mass matrices:
M.-C.C \& K.T. Mahanthappa

Up-type quarks \Leftrightarrow Dirac neutrinos
Down-type quarks \Leftrightarrow charged leptons

$$
\text { seesaw } \Rightarrow M_{\nu} \sim\left(\begin{array}{lll}
0 & 0 & * \\
0 & 1 & 1 \\
* & 1 & 1
\end{array}\right)
$$

12 parameters accommodate 22 fermion masses, mixing angles and CP phases in both quark and lepton sectors

- prediction for θ_{13} :

$$
\sin \theta_{13} \sim\left(\frac{\Delta m_{\text {sun }}^{2}}{\Delta m_{\text {atm }}^{2}}\right)^{1 / 2} \sim O(0.1) \Rightarrow \text { LMA }
$$

continuous family symmetries: to get bi-maximal (TBM) \Rightarrow specific values for parameters (couplings)

Tri-bimaximal Neutrino Mixing

- Neutrino mass matrices:

$$
M=\left(\begin{array}{lll}
A & B & B \\
B & C & D \\
B & D & C
\end{array}\right) \quad \square \quad \sin ^{2} 2 \theta_{23}=1 \quad \theta_{13}=0
$$

solar mixing angle NOT fixed

- S3 Mohapatra, Nasri, Yu, 2006; \ldots
- D 4 Grimus, Lavoura, 2003; ...
- $\mu-\tau$ symmetry Fukuyama, Nishiura, '97; Mohapatra, Nussinov, '99; Ma, Raidal, 'or; ...
- if $\mathrm{A}+\mathrm{B}=\mathrm{C}+\mathrm{D} \longrightarrow \tan ^{2} \theta_{12}=1 / 2 \quad \mathrm{TBM}$ pattern
- A4 Ma, 'O4; Altarelli, Feruglio, 'o6;
- $Z_{3} \times Z_{7} \quad$ Luhn, Nasri, Ramond, 2007
[Other discrete groups: Hagedorn, Lindner, Plentinger; Chen, Frigerio, Ma; and many others...]
recent claim: S_{4} unique group for TBM [C.S. Lam, 2008]

Perfect Geometric Solids \& Family Symmetries

solid	faces	vert.	Plato	Hindu	sym.
tetrahedron	4	4	fire	Agni	A_{4}
octahedron	8	6	air	Vayu	S_{4}
cube	6	8	earth	Prithvi	S_{4}
icosahedron	20	12	water	Jal	A_{5}
dodecahedron	12	20	quintessence	Akasha	A_{5}

From E. Ma, talk at WHEPP-9, Bangalore

A5
आकाश

Non-abelian Finite Family Symmetry

- TBM mixing matrix: can be realized in finite group family symmetry based on $\mathrm{A}_{4} \mathrm{Ma}$ \& Rajasekaran, 01
- even permutations of 4 objects

$$
\begin{aligned}
& \mathrm{S}:(\mathrm{I} 234) \rightarrow(432 \mathrm{I}) \\
& \mathrm{T}:(\mathrm{I} 234) \rightarrow(23 \mathrm{I} 4)
\end{aligned}
$$

- invariance group of Tetrahedron

- orbifold compactification:

$$
6 \mathrm{D} \rightarrow 4 \mathrm{D} \text { on } \mathrm{T}_{2} / \mathrm{Z}_{2}
$$

Altarelli, Feruglio, ‘o6

- Deficiencies:
- does NOT give rise to CKM mixing: $\mathrm{V}_{\mathrm{ckm}}=\mathrm{I}$
- does NOT explain mass hierarchy
- all CG coefficients real

The Double Tetrahedral T' Symmetry

- consider double covering of A_{4}
- Classified as a candidate family symmetry that can arise from Type-II B String theories

Frampton, Kaphart, 1995, 2001

- can account for quark sector:

Carr, Frampton, ‘○7; Feruglio, Hedgedorn, Lin, Merlo, ‘o7
exist in $\mathrm{A}_{4}: 1,1^{\prime}, 1^{\prime \prime}, 3 \longrightarrow$
not in $\mathrm{A}_{4}: 2,2^{\prime}, 2^{\prime \prime}$ TBM for neutrinos

- Combined with GUT: $\mathrm{T}^{\prime} \times \operatorname{SU}(5)$ GUT
- only 9 operators allowed: highly predictive model
M.-C.C \& K.T. Mahanthappa Phys. Lett. B652, 34 (2007)
- all 22 masses, mixing angles (CKM \& MNS) and CPV measures are "accommodated"
- lepton mixing
- CPV in quark and lepton sectors

CG coefficients of T^{\prime} \& $\mathrm{SU}(5)$ \Rightarrow pure geometrical in origin!

* In RS warped extra dimension: prevent tree-level FCNCs in both quark and lepton sectors

Group Theory of T'

- generators:

$$
S^{2}=R, T^{3}=1,(S T)^{3}=1, R^{2}=1 \quad \begin{aligned}
& \mathrm{R}=1: 1,1^{\prime}, 1^{\prime \prime}, 3 \text { (vector) } \\
& \mathrm{R}=-1: 2,2^{\prime}, 2^{\prime \prime} \quad \text { (spinorial) }
\end{aligned}
$$

- generators: in $3^{-d i m}$ representations, T-diagonal basis

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega^{2} & -1 & 2 \omega \\
2 \omega & 2 \omega^{2} & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

complex CG coefficients in T^{\prime}
complexity cannot be avoided by different basis choice

- spinorial x spinorial \supset vector:

$$
2 \otimes 2=2^{\prime} \otimes 2^{\prime \prime}=2^{\prime \prime} \otimes 2^{\prime}=3 \oplus 1
$$

- spinorial x vector \supset spinorial:

$$
3=\left(\begin{array}{c}
\left(\frac{1-i}{2}\right)\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \\
i \alpha_{1} \beta_{1} \\
\alpha_{2} \beta_{2}
\end{array}\right)
$$

$$
2 \otimes 3=2 \oplus 2^{\prime} \oplus 2^{\prime \prime} \quad 2=\binom{(1+i) \alpha_{2} \beta_{2}+\alpha_{1} \beta_{1}}{(1-i) \alpha_{1} \beta_{3}-\alpha_{2} \beta_{1}}
$$

A Novel Origin of CP Violation

- Conventionally:
- Explicit CP violation: complex Yukawa couplings
- Spontaneous CP violation: complex Higgs VEVs
\star complex CG coefficients in $\mathrm{T}^{\prime} \Rightarrow$ explicit CP violation
- real Yukawa couplings, real Higgs VEVs
- CP violation in both quark and lepton sectors determined by complex CG coefficients
- no additional parameters needed \Rightarrow extremely predictive model!!

Tri-bimaximal Mixing from Family Symmetry

- fermion charge assignments:

$$
\left(\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\ell_{3}
\end{array}\right)_{L} \sim 3, \quad e_{R} \sim 1, \quad \mu_{R} \sim 1^{\prime \prime}, \quad \tau_{R} \sim 1^{\prime} \quad \xi \sim 3, \quad \eta \sim 1 \quad\langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

- SM Higgs ~ singlet under T ${ }^{\prime}$
- operator for neutrino masses: $\frac{H H L L}{M}\left(\frac{\langle\xi\rangle}{\Lambda}+\frac{\langle\eta\rangle}{\Lambda}\right)$
- TBM neutrino mixing from CG coefficients

Form diagonalizable!

$$
M_{\nu}=\frac{\lambda \nu^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \quad V_{\nu}=U_{\mathrm{rBM}}=\left(\begin{array}{ccc}
\sqrt{2}^{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \quad \begin{aligned}
& \text {-n adjustable parameters } \\
& \text {-n neutrino mixing from CG } \\
& \text { coefficients! }
\end{aligned}
$$

$V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}} \quad \begin{aligned} & \text { General conditions for Form Diagonalizablility } \\ & \text { in seesaw: M.-C. C, S. F. King, 2009 }\end{aligned}$
charged lepton mass matrix in non-GUT model: diagonal
in SU(5) model: corrections to TBM due to GUT relations $\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
$V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}}$
charged lepton mass matrix in non-GUT model: diagonal
in SU(5) model: corrections to TBM due to GUT relations $\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

- in $\operatorname{SU}(5)$ model: corrections to TBM due to GUT relations
- corrections at leading order in terms of θ_{c} and CG only

Quark and Lepton Mixing Matrices

- CKM mixing matrix:
M.-C.C \& K.T. Mahanthappa Phys. Lett. B652, 34 (2007); arXiv:0904.I72I

$$
\begin{gathered}
M_{u}=\left(\begin{array}{ccc}
i \phi_{0}^{\prime 3} & \frac{1-i}{2} \phi_{0}^{\prime 3} & 0 \\
\frac{1-i}{2} \phi_{0}^{\prime 3} & \phi_{0}^{\prime 3}+\left(1-\frac{i}{2}\right) \phi_{0}^{2} & y^{\prime} \psi_{0} \zeta_{0} \\
0 & y^{\prime} \psi_{0} \zeta_{0} & 1
\end{array}\right) y_{t} v_{u} \quad M_{d}=\left(\begin{array}{ccc}
0 & (1+i) \phi_{0} \psi_{0}^{\prime} & 0 \\
-(1-i) \phi_{0} \psi_{0}^{\prime} & \psi_{0} N_{0} & 0 \\
\phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0}, \\
\theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}}
\end{gathered}
$$

- MNS matrix:

$$
\begin{aligned}
& M_{e}=\left(\begin{array}{ccc}
0 & -(1-i) \phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} \\
(1+i) \phi_{0} \psi_{0}^{\prime} & -3 \psi_{0} N_{0} & \phi_{0} \psi_{0}^{\prime} \\
0 & 0 & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0} \quad \Rightarrow \text { corrections to TBM related to } \\
& U_{\mathrm{MNS}}=V_{e, L}^{\dagger} U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
1 & -\theta_{c} / 3 & * \\
\theta_{c} / 3 & 1 & * \\
* & * & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
& \tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta \\
& \theta_{13} \simeq \theta_{c} / 3 \sqrt{2}
\end{aligned}
$$

Quark-Lepton Complementarity

Cepton mixing
quark mixing

parameter	Best-fit value	3σ range	parameter	Best-fit value	3σ range
θ_{12}	33.2°	$28.7^{\circ}-38.1^{\circ}$	θ_{c})	12.88°	$12.75^{\circ}-13.01^{\circ}$
θ_{23}	45°	$35.7^{\circ}-55.6^{\circ}$		$2.36{ }^{\circ}$	$2.25^{\circ}-2.48^{\circ}$
θ_{13}	$2.6{ }^{\circ}$	$0-12.5^{\circ}$	θ_{13}^{9}	0.21°	$0.17^{\circ}-0.25^{\circ}$
$\theta_{12}+\theta_{c}=45^{\circ}$		Raidal, ${ }^{\circ} 04 ;$ Smirnov \& Minakata, '04	quark-lepton complementarity relation		

more generally:

$$
\theta_{12}+\theta_{C}\left(\frac{1}{\sqrt{2}+\frac{\theta_{C}}{4}}\right) \simeq \frac{\pi}{4}
$$

Plentinger, Seidl, Winter, 08; Frampton, Matsuzaki, 08;
RG effects: $\Delta \theta_{c} \sim \theta_{c}{ }^{4}$
MSSM: normal hierarchy $\Delta \theta_{12}<0.1^{\circ}$ Schmidt \& Smirnov, 06
Motivate measurements of neutrino mixing angles to at least the accuracy of the measured quark mixing angles

Numerical Results

- diagonalization matrix for charged leptons:

$$
\left(\begin{array}{ccc}
0.997 e^{i 177^{\circ}} & 0.0823 e^{i 131^{\circ}} & 1.31 \times 10^{-5} e^{-i 45^{\circ}} \\
0.0823 e^{i 41.8^{\circ}} & 0.997 e^{i 176^{\circ}} & 0.000149 e^{-i 3.58^{\circ}} \\
1.14 \times 10^{-6} & 0.000149 & 1
\end{array}\right)
$$

- MNS Matrix: $\quad\left|m_{1}\right|=0.0156 \mathrm{eV}, \quad\left|m_{2}\right|=0.0179 \mathrm{eV}, \quad\left|m_{3}\right|=0.0514 \mathrm{eV}$

$$
\begin{aligned}
& \left(\begin{array}{c}
0.838 \\
-0.385-0.0345 e^{i 227^{\circ}} \\
0.384-0.0346 e^{i 227^{\circ}}
\end{array}\right. \\
& \begin{array}{c}
0.542 \\
0.594-0.0224 e^{i 227^{\circ}} \\
-0.592-0.0224 e^{i 227^{\circ}}
\end{array} \\
& \left.\begin{array}{c}
0.0583 e^{-i 227^{\circ}} \\
0.705 \\
0.707
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} 2 \theta_{a t m}=1, \quad \tan ^{2} \theta_{\odot}=0.419, \quad\left|U_{e 3}\right|=0.0583
\end{aligned}
$$

prediction for Dirac CP phase: $\delta=227$ degrees

$$
J_{\ell}=-0.00967
$$

Note that these predictions do NOT depend on u_{o} and ξ_{0}

- neutrino masses: using best fit values for $\Delta \mathrm{m}^{2}$

$$
u_{0}=-0.0593, \quad \xi_{0}=0.0369, \quad M_{X}=10^{14} \mathrm{GeV}
$$

$$
\left|m_{1}\right|=0.0156 \mathrm{eV}, \quad\left|m_{2}\right|=0.0179 \mathrm{eV}, \quad\left|m_{3}\right|=0.0514 \mathrm{eV}
$$

$$
\alpha_{21}=\pi \quad \alpha_{31}=0
$$ neutrino sector

predicting: 3 masses, 3 mixing angles, 3 CP Phases; both $\theta_{\text {sol }} \& \theta_{\text {atm }}$ agree with \exp

Neutrino Mass Sum Rule

- sum rule among three neutrino masses: $m_{1}-m_{3}=2 m_{2}$
- including CP violation:

$$
\begin{array}{lr}
m_{1}=u_{0}+3 \xi_{0} e^{i \theta} & \Delta m_{a t m}^{2} \equiv\left|m_{3}\right|^{2}-\left|m_{1}\right|^{2}=-12 u_{0} \xi_{0} \cos \theta \\
m_{2}=u_{0} & \Delta m_{\odot}^{2} \equiv\left|m_{2}\right|^{2}-\left|m_{1}\right|^{2}=-9 \xi_{0}^{2}-6 u_{0} \xi_{0} \cos \theta \\
m_{3}=-u_{0}+3 \xi_{0} e^{i \theta} &
\end{array}
$$

- leads to sum rule

$$
\Delta m_{\odot}^{2}=-9 \xi_{0}^{2}+\frac{1}{2} \Delta m_{a t m}^{2} \longrightarrow \Delta m_{a t m}^{2}>0
$$

normal hierarchy predicted!!

- constraint on Majorana phases:

$$
0>\cos \theta>-\frac{3}{2} \frac{\xi_{0}}{u_{0}}
$$

- mass sum rule:
- large neutrino-less double beta decay matrix element
\Rightarrow large sum of three absolute masses (cosmology)

Models with Tri-bimaximal Neutrino Mixing

$\operatorname{Cos} \triangle$

For A4: Altarelli et al, 2006

Inverted hierarchy 10^{-1} is TESTABLE

Normal hierarchy is 10 NOT TESTABLE

Approx. degeneracy
is TESTABLE

[^0]
TBM \longleftrightarrow Leptogenesis

- TBM from broken discrete symmetries through type-I seesaw
- exact TBM mixing
E. Jenkins, A. Manohar, 2008
$\sin \theta_{13}=0 \Rightarrow J_{C P}^{l e p} \propto \sin \theta_{13}=0$
CP violation through Majorana phases: α_{21}, α_{31}
\Rightarrow no leptogenesis as $\operatorname{Im}\left(y_{D} y_{D}^{\dagger}\right)=0$
- true even when flavor effects included
- corrections to TBM pattern due to high dim operators
small symmetry breaking parameter $\eta \ll 1$:

$$
\sin \theta_{13} \sim \eta \sim 10^{-2}, \epsilon \sim 10^{-6} \text { can be generated }
$$

- $\operatorname{SU}(5) \times \mathrm{T}^{\prime}$ model: corrections to TBM from charged lepton sector
- without flavor effects $\Rightarrow \epsilon=0$ M.-C.C., K.T. Mahanthappa, under preparation
- with flavor effects $\Rightarrow \epsilon \sim \mathrm{IO}^{-6}$ right amount for leptogenesis
- Dirac phase the only non-vanishing leptonic CPV phase
\Rightarrow connection between leptogenesis \& low energy CPV

Distinguishing Models

C. Albright \& M.-C.C, 2006

LFV Rare Processes

predictions for LFV processes in five viable SUSY SO(I0) models:
-- assuming MSUGRA boundary conditions
-- including Dark Matter constraints from WMAP (lower bound on predictions)

TeV Scale Seesaw

M.-C.C, A. de Gouvea, B. Dobrescu, 2006

- $S M \times U(I)_{\mathrm{NA}}+3 \mathrm{~V}_{\mathrm{R}}$: charged under $\mathrm{U}(\mathrm{I})_{\mathrm{NA}}$ symmetry, broken by $\langle\phi\rangle$
- U(I) $)_{\text {NA }}$ forbids usual dim-4 Dirac operator and dim-5 Majorana operator

$$
m_{L L} \sim \frac{H H L L}{M} \rightarrow M \sim 10^{14} \mathrm{GeV}
$$

- neutrino masses generated by very high dimensional operators

$$
m_{L L} \sim\left(\frac{\langle\phi\rangle}{M}\right)^{p} \frac{H H L L}{M} \rightarrow M \sim T e V, \quad \text { for large } p \quad \frac{\langle\phi\rangle}{M} \sim \text { not too small }
$$

- anomaly cancellations: charges of different families of fermions related \Rightarrow predict flavor mixing
- Through couplings to Z^{\prime} : can probe neutrino sector at colliders

LHC Potential

M.-C.C, J.R. Huang, under preparation
lepton charges: $\mathrm{q}_{\mathrm{e}}=-55 / 8, \mathrm{q}_{\mu}=\mathrm{q}_{\mathrm{T}}=49 / 8$

Integrated Luminosity needed for 5σ discovery

Integrated Luminosity needed for 5σ distinction

Non-anomalous v.s. Anomalous U(1)

- anomaly cancellations: relating charges of different fermions
- $[\mathrm{U}(1)]^{3}$ condition generally difficult to solve
- most models utilized anomalous $\mathrm{U}(\mathrm{I})$:

- mixed anomaly: cancelled by Green-Schwarz mechanism
- $[\mathrm{U}(1)]^{3}$ anomaly: cancelled by exotic fields besides RH neutrinos
- $\mathrm{U}(1)$ broken at fundamental string scale
constraints not
as stringent
- earlier claim that $\mathrm{U}(\mathrm{I})$ has to be anomalous to be compatible with SU(5) while giving rise to realistic fermion mass and mixing patterns
L.E. Ibanez, G.G. Ross 1994
- non-anomalous $\mathrm{U}(\mathrm{I})$ can be compatible with SUSY SU(5) while giving rise to realistic fermion mass and mixing patterns
- no exotics other than 3 RH neutrinos M.-C.C, D.R.T. Jones, A. Rajaraman, H.B.Yu, 2008
- U(I) also forbids Higgs-mediated proton decay

Conclusion

- finite group family symmetry: group theoretical origin for mixing and CP violation
- Predictions of existing models for θ_{13} : 0 - current bound
- Precision measurements for the θ_{13} and mass hierarchy can tell different scenarios apart:
- leptonic family symmetry vs GUT
- inverted hierarchy, small 1-3 mixing $=>$ lepton symmetry
- large 1-3 mixing \Rightarrow inconclusive
- deviation from maximal θ_{23} may tell how symmetry is broken
- May probe other interesting relations: e.g.
- quark-lepton complementarity: $\theta_{12}+\theta_{c}=45^{\circ}$
- new quark-lepton complementarity: $\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta$
- LFV rare processes can be a robust test

Precision MIeasurements Indispensable!!

[^0]: from: F. Feruglio, A. Strumia, F. Vissani ('02)

