Measurements of CKM angle ϕ_3/γ

Tagir AUSHEV on behalf of the Belle Collaboration EPFL (Lausanne), ITEP (Moscow)

CKM matrix and φ₃/γ angle
Methods
ADS
GLW
GGSZ or Dalitz plot method
Summary

CKM matrix & ϕ_3/γ

Constraints on CKM parameters

Methods of ϕ_3/γ measurement

- Based on B \rightarrow DK decay with D⁰-D^{$\overline{0}$} interference:
 - GLW (CP eigenstates: $D^0 \rightarrow \pi\pi$, KK, K_S φ , K_S ω)
 - ADS (CF and DCS states: $D^0 \rightarrow K\pi$, $K\pi\pi^0$)
 - GGSZ or Dalitz (multibody states: D⁰→K_sππ, K_sKK, πππ⁰)
- Based on B⁰ decays (measurement of $2\phi_1 + \phi_3$)
 - $-B^{0} \rightarrow D^{(*)} \pi^{+}$, Dp full rec.
 - $-B^{0} \rightarrow D^{*} \pi^{+}$ partial rec.

GLW method

M. Gronau, D. London, D. Wyler, PLB 253, 483 (1991); PLB 265, 172 (1991)

CP eigenstate of D-meson is used (D_{CP}) CP-even: $D_1 \rightarrow K^+K^-$, $\pi^+\pi^-$, CP-odd: $D_2 \rightarrow K_S \pi^0$, $K_S \omega$, $K_S \phi$, $K_S \eta$, ...

$$R_{1,2} = \frac{Br(B \rightarrow D_{1,2}K)/Br(B \rightarrow D_{1,2}\pi)}{Br(B \rightarrow D^0K)/Br(B \rightarrow D^0\pi)} = 1 + r_B^2 + 2r_B\cos\delta'\cos\varphi_3$$

$$A_{1,2} = \frac{Br(B^+ \to D_{1,2}K^+) - Br(B^- \to D_{1,2}K^-)}{Br(B^+ \to D_{1,2}K^+) + Br(B^- \to D_{1,2}K^-)} = \frac{2r_B \sin\delta' \sin\varphi}{R_{1,2}}$$

6

Sensitivity depends on hadronic parameters $r_{_B}$ and δ'

Alternative set of variables:
$$x_{\pm} = r_B \cos(\delta \pm \varphi_3) = \frac{R_1(1 \mp A_1) - R_2(1 \mp A_2)}{4}$$
 $r_B^2 = \frac{R_1 + R_2 - 2}{2}$

Does not provide direct measurement of ϕ_3/γ , but helps in combination with other methods Sensitivity depends on strong phase (δ =0 or 180 give no sensitivity)

September 15, 2009

Tagir Aushev, WIN'2009

B meson reconstruction

Y(4S) decays to pair of B-mesons, so in CMS energy of B meson is known:

$$E_B = E_{CM} / 2$$

It is used to select B candidates using variables:

•CM energy difference:

$$\Delta E = \sum E_i - (E_{CM} / 2)$$

•B-meson "beam-constrained mass" M_{bc} (Belle) or energy substituted mass" M_{ES} (BaBar):

$$M_{bc} = \sqrt{(E_{CM}/2)^2 - (\sum p_i)^2}$$

5.26

5.28

5.3

M_{bc} (GeV/c²)

September 15, 2009 7

ADS method: $B^- \rightarrow DK^-$ with $D \rightarrow K^+\pi^-$

D. Atwood, I. Dunietz and A. Soni, PRL 78, 3357 (1997)

Enhance magnitude of CP violation by using Doubly Cabibbo-suppressed D decays

ADS method: $B^- \rightarrow DK^-$ with $D \rightarrow K^+\pi^-$

0 0.1 ∆E (GeV)

0.2

0.3

-0.1

PRD 78, 071901 (2008)

In the absence of the signal: $R_{DK} < 1.8 \times 10^{-2}$ @ 90% C.L. which corresponds to: $r_B < 0.19$

ADS: BaBar

ADS: BaBar results

Dalitz analysis: three-body decays

A.Giri, Yu.Grossman, A.Soffer, J.Zupan, PRD 68, 054018 (2003) A.Bondar, Proc. of Belle Dalitz analisis meeting, 24-26 Sep 2002

 $|D^0\rangle + re^{i\theta}|\overline{D}^0\rangle$ Using 3-body final state, identical for D⁰ and anti-D⁰: K_s $\pi^+\pi^-$

Dalitz distribution density:

$$dp(m_{K_S\pi^+}^2, m_{K_S\pi^-}^2) \sim |f_D|^2 dm_{K_S\pi^+}^2 dm_{K_S\pi^-}^2$$

$$\left|f_{B}(m_{K_{S}\pi^{+}}^{2},m_{K_{S}\pi^{-}}^{2})\right|^{2}$$
 =

(Assuming CP-conservation in D⁰ decays)

$$= \left[\begin{array}{c} & & \\$$

If $f_B(m_{K_S\pi^+}^2, m_{K_S\pi^-}^2)$ is known, parameters $(\phi_3/\gamma, r_B, \delta)$ are obtained from the fit to Dalitz distributions of $D \rightarrow K_S \pi^+ \pi^-$ from $B^{\pm} \rightarrow DK^{\pm}$ decays. Need to know a complex form of the D⁰ decay amplitude, but only $|f_D|^2$ is obtained from $D^* \rightarrow D\pi$: Need to use model description, model uncertainty as a result.

September 15, 2009

$D^0 \rightarrow K_s \pi^+ \pi^-$ and $K_s K^+ K^-$ amplitudes

Amplitudes extracted from $D^* \rightarrow D^0 \pi^+$ produced in continuum (e⁺e⁻ \rightarrow cc)

 $K^{*}(892)^{\pm}, K^{*}_{0}(1430)^{\pm}, K^{*}_{2}(1430)^{\pm}, K^{*}(1680)^{\pm}, \rho(770), \omega(782), f_{2}(1270),$ S-wave: K-matrix (BaBar) Scalar resonances σ, f_{0}, K^{*}_{0} (Belle) $a_0(980)^0$, $\phi(1020)$, $f_0(1370)$, $f_2(1270)$, $a_0(1450)^0$, $a_0(980)^{\pm}$, $a_0(1450)^{\pm}$

CLEOc data are necessary to make model independent analyses

Dalitz: signal selection (Belle)

 $B \pm \rightarrow D * K \pm$, $D * \rightarrow D \gamma$ mode

Dalitz: results

Dalitz: Summary

Summary

- Many results are provided by B-factories in last year:
 - BaBar & Belle ADS
 - Belle Dalitz updated $D^0 \rightarrow K_S \pi^+ \pi^-$ and new $D^* \rightarrow D^0(\pi, \gamma)$
 - BaBar Dalitz updated $D^0 \rightarrow K_S \pi^+ \pi^-$ and new $D^0 \rightarrow K_S K^+ K^-$
- Strong evidence of CP violation combining all results
- Good agreement between different measurements, both in r_{DK}/r_B and φ_3/γ :
 - BaBar: $\gamma = (76 \pm 22 \pm 5 \pm 5)^{\circ}$ (61.5^{°+29.0°}_{-19.2°} using Dalitz+GLW)
 - Belle: $\phi_3 = (78.4 + 10.8)_{-11.6} \pm 3.6 \pm 8.9)^{\circ}$