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Least squares best fit

What is σ?

Resume of straight line

Correlated errors

Goodness of fit with χ2

Number of Degrees of Freedom

Other G of F methods

Errors of first and second kind

Combinations

THE paradox  
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(Goodness of Fit)

Least Squares Straight Line Fitting

Data = {xi, yi ±δyi}

1) Does it fit straight line?

(Goodness of Fit)

2) What are gradient and intercept?

(Parameter Determination)
Do 2) first

N.B.1    Can be used for non “a+bx”

e.g. a + b/x + c/x2

N.B.2    Least squares is not the only method
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If theory and data OK:

yth ~  yobs
 S small

Minimise S  best line

Value of Smin  how good 

fit is
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Which σ?                           Exptl σ Theory σ

Name                                Neyman                              Pearson

Ease of algebra                 Easier, so this version

is used more

If Th = 0.01, Exp = 1          Contributes 1 to S            Contributes 98 to S

More plausible

S ~ χ2 ?                                                                                  More plausible

S = ( â -a1)
2/σ2 +                Biassed down because      Biassed up because

(â -a2)
2/σ2 smaller ai smaller σ larger â  larger σ

(For â ~ai, and both much larger than σi, 2 methods are very similar)

Which σ should we use?
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Straight Line Fit

N.B. L.S.B.F. passes through (<x>, <y>)

(Fixed σi )

<y>
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Correlated intercept and gradient?
2 * Inverse covariance matrix =

∂2S    ∂2S                  Σ1/σi
2 Σxi/σi

2

∂a2 ∂a∂b 

=

∂2S     ∂2S                  Σxi/σi
2 Σxi

2/σi
2

∂a∂b    ∂b2

Invert Covariance matrix

Covariance ~ -Σxi/σi
2 = [x]

If measure intercept at weighted c. of g. of x for 
data points, cov = 0
i.e. gradient and intercept there are uncorrelated

So track params are usually specified at centre  
of track.
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a

b

x

y

Covariance(a,b) ~ -<x>

<x> positive                          <x> negative
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Measurements with correlated errors e.g. systematics?
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Comments on Least Squares method
1) Need to bin

Beware of too few events/bin

2) Extends to n dimensions                                                              

but needs lots of events for n larger than 2 or 3

3) No problem with correlated uncertainties 

4) Can calculate Smin “on line”    i.e. single pass through data

Σ (yi – a –bxi)
2 /σ2 = [yi

2] – b [xiyi] –a [yi]

5) For theory linear in params, analytic solution             

y

6) Goodness of Fit

x  

Individual events 

(e.g. in cos θ )

yi±σi v xi

(e.g. stars)

1) Need to bin? Yes No need

4) χ2 on line First histogram Yes
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Moments Max Like Least squares

Easy? Yes, if… Normalisation, 

maximisation messy

Minimisation

Efficient? Not very Usually best Sometimes = Max Like

Input Separate events Separate events Histogram

Goodness of fit Messy No (unbinned) Easy

Constraints No Yes Yes

N dimensions Easy if …. Norm, max messier Easy

Weighted events Easy Errors difficult Easy

Bgd subtraction Easy Troublesome Easy

Inverse covariance

matrix

Observed spread,

or analytic

- ∂2lnL

∂pi∂pj

∂2S      

2∂pi∂pj

Main feature Easy Best Goodness of Fit
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Goodness of Fit: χ2 test

1) Construct S and minimise wrt free parameters

2) Determine ν = no. of degrees of freedom

ν = n – p

n = no. of data points

p = no. of FREE parameters

3) Look up probability that, for ν degrees of freedom, χ2 ≥ Smin

Uses  i) Poisson ~ Gaussian if expected number not too small

ii) For N yi distributed as Gaussian  N(0,1),  Σyi
2 ~ χ2 with ndf = N

So works ASYMPTOTICALLY. Otherwise use MC for dist of S (or binned L) 
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So Smin > ν + 3√2ν is LARGE

e.g. Smin = 2200 for ν = 2000?

Properties of mathematical χ2 distribution:

χ2 = ν

σ2(χ2) = 2ν
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Cf: Area in tails of Gaussian
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χ2 with ν degrees of freedom?

ν = data – free parameters ?

Why asymptotic (apart from Poisson  Gaussian) ?

a) Fit flatish histogram with

y = N {1 + 10-6 cos(x-x0)}   x0 = free param

b) Neutrino oscillations: almost degenerate parameters 

y ~ 1 – A sin2(1.27 Δm2 L/E)        2 parameters

1 – A (1.27 Δm2 L/E)2 1 parameter   
Small  Δm2
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Goodness of Fit

.       χ2      Very general

Needs binning

Not sensitive to sign of deviation

Run Test

Kolmogorov-Smirnov

Aslan and Zech `Energy Test’

Durham IPPP Stats Conf (2002)

Binned Likelihood ( = Baker-Cousins}

etc
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Goodness of Fit: 

Kolmogorov-Smirnov

Compares data and model cumulative plots

(or 2 sets of data)

Uses largest discrepancy between dists.

Model can be analytic or MC sample

Uses individual data points

Not so sensitive to deviations in tails   

(so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n 

(but not when free parameters involved – needs MC)
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Goodness of fit: ‘Energy’ test

Assign +ve charge to data       ; -ve charge to M.C.

Calculate ‘electrostatic energy E’ of charges

If distributions agree, E ~ 0

If distributions don’t overlap, E is positive                  v2

Assess significance of magnitude of E by MC

N.B.                                                                                                             v1

1) Works in many dimensions

2) Needs metric for each variable (make variances similar?)

3) E ~ Σ qiqj f(Δr = |ri – rj|) ,    f = 1/(Δr + ε) or –ln(Δr + ε) 

Performance insensitive to choice of small ε

See Aslan and Zech’s paper at: 

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml



For histogram, uses Poisson prob P(n;µ) for n 

ni observed events when expect µ.

Construct L-ratio  = Product{P(ni;µi)/P(ni;µ=ni)}

P(ni;µ=ni) is best possible µ for that ni

µi Need denoms because P(100;100.0)                     

very different from P(1;1.0)
x

-2*L ratio ~ χ2 when µi large and ni ~ µi

Better than Neyman or Pearson χ2 when µi small

Baker and Cousins, NIM 221 (1984) 437
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Binned data and Goodness of Fit using L-ratio
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Wrong Decisions

Error of First Kind
Reject H0 when true

Should happen x% of tests

Errors of Second Kind
Accept H0 when something else is true

Frequency depends on ………

i) How similar other hypotheses are

e.g. H0 = μ

Alternatives are:     e           π K     p

ii) Relative frequencies:     10-4 10-4 1  0.1  0.1

Aim for maximum efficiency          Low error of 1st kind

maximum purity                 Low error of 2nd kind

As χ2 cut tightens, efficiency    and purity 

Choose compromise
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How serious are errors of 1st and 2nd kind?

1) Result of experiment
e.g Is spin of resonance = 2?

Get answer WRONG

Where to set cut?

Small cut         Reject when correct

Large cut         Never reject anything

Depends on nature of H0  e.g.

Does answer agree with previous expt?

Is expt consistent with special relativity?

2) Class selector e.g. b-quark / galaxy type / γ-induced cosmic shower

Error of 1st kind:      Loss of efficiency

Error of 2nd kind:      More background

Usually easier to allow for 1st than for 2nd

3) Track finding
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So  â = Σwiai/Σwi , where wi=1/σi
2

Simple Example of Minimising S

Combining:     Uncorrelated exptl results 

N.B.  Better to 

combine data rather 

than results
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Difference between weighted and simple averaging

Isolated island with conservative inhabitants

How many married people ?

Number of married men      = 100 ± 5 K

Number of married women =   80 ± 30 K

Total = 180 ± 30 K

Wtd average =   99 ± 5 K                    CONTRAST

Total = 198 ± 10 K

GENERAL POINT: Adding (uncontroversial) theoretical input can 
improve precision of answer

Compare “kinematic fitting”



Best Linear Unbiassed Estimate

Combine several possibly correlated estimates of same quantity

e.g. v1, v2, v3

Covariance matrix σ1
2 cov12 cov13

cov12 σ2
2 cov23

cov13 cov23 σ3
2

Uncorrelated              Positive correlation           Negative correlation

covij = ρij σi σj with   -1 ≤ ρ ≤ 1
Lyons, Gibault + Clifford

NIM A270 (1988) 42



vbest = w1v1 +  w2v2 +  w3v3 Linear

with    w1 +  w2 +  w3 =1           Unbiassed

to give σbest = min (wrt w1, w2, w3)      Best
For uncorrelated case, wi ~ 1/σi

2

For correlated pair of measurements with σ1 < σ2

vbest =  α v1 + β v2                β = 1 - α

β = 0 for ρ = σ1/σ2

β < 0 for ρ > σ1/σ2     i.e. extrapolation!     e.g. vbest = 2v1 – v2

V 

Vtrue v1 v2

Extrapolation is sensible:
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Beware extrapolations because

[b] σbest tends to zero, for ρ = +1 or -1

[a] vbest sensitive to ρ and σ1/σ2

N.B. For different analyses of ~ same data, 

ρ ~ 1, so choose ‘better’ analysis, rather than 

combining 



N.B. σbest depends on σ1, σ2 and ρ, but not on v1 – v2

e.g. Combining  0±3 and x±3  gives x/2 ± 2

BLUE = χ2

S(vbest) = Σ (vi – vbest) E
-1

ij (vj – vbest) , and minimise S wrt vbest

Smin distributed like χ2, so measures Goodness of Fit

But BLUE gives weights for each vi

Can be used to see contributions to σbest from each source of 
uncertainties e.g. statistical and systematics

different systematics 

For combining two or more possibly correlated measured quantities 
{e.g. intercepts and gradients of a straight  line), use χ2 approach. 

Alternatively. Valassi has extended BLUE approach
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a

b

x

y

Covariance(a,b) ~ -<x>

<x> positive                          <x> negative



Uncertainty on Ωdark energy
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When combining pairs of 

variables, the uncertainties on the 

combined parameters can be 

much smaller than any of the

individual uncertainties  

e.g. Ωdark energy
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THE PARADOX

Histogram with 100 bins

Fit with 1 parameter

Smin: χ
2 with NDF = 99  (Expected χ2 = 99 ± 14)

For our data, Smin(p0) = 90

Is p2 acceptable if S(p2) = 115?

1) YES.    Very acceptable χ2 probability

2) NO.      σp from S(p0 +σp) = Smin +1 = 91

But S(p2) – S(p0) = 25

So p2 is 5σ away from best value
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Next time: 

Bayes and Frequentism: 

the return of an old controversy

The ideologies, with examples

Upper limits

Feldman and Cousins

Summary
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KINEMATIC FITTING
Tests whether observed event is consistent

with specified reaction
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Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis    [Goodness of Fit]

2) Can calculate missing quantities        [Param detn.]

3) Good to have tracks conserving E-P   [Param detn.]

4) Reduces uncertainties                         [Param detn.]
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Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis      [Goodness of Fit]
Use Smin and ndf

2) Can calculate missing quantities        [Param detn.]
e.g. Can obtain |P| for short/straight track, neutral beam; px,py,pz of outgoing ν, n, K0

3) Good to have tracks conserving E-P   [Param detn.]
e.g. identical values for resonance mass from prodn or decay 

4) Reduces uncertainties                        [Param detn.]
Example of “Including theoretical input reduces uncertainties”
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How we perform Kinematic Fitting ?

Observed event:    4 outgoing charged tracks

Assumed reaction: ppppπ+π-

Measured variables: 4-momenta of each track, vi
meas

(i.e. 3-momenta & assumed mass)

Then test hypothesis:          

Observed event = example of assumed reaction

i.e. Can tracks be wiggled “a bit” to do so?

Tested by: 

Smin = Σ(vi
fitted - vi

meas)2 / σ2

where vi
fitted conserve 4-momenta

(Σ over 4 components of each track) 

N.B. Really need to take correlations into account

i.e. Minimisation subject to constraints (involves Lagrange Multipliers)
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‘KINEMATIC’ FITTING

Angles of triangle: θ1 + θ2 + θ3 = 180

θ1 θ2 θ3

Measured    50     60     73±1     Sum = 183

Fitted             49      59      72                     180

χ2 = (50-49)2/12 + 1 + 1 =3

Prob {χ2
1 > 3} = 8.3%

ALTERNATIVELY:

Sum =183 ± 1.7, while expect 180

Prob{Gaussian 2-tail area beyond 1.73σ} = 8.3%
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Toy example of Kinematic Fit
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i.e. KINEMATIC FIT 

REDUCED UNCERTAINTIES


