χ^{2} and Goodness of Fit

Louis Lyons and Lorenzo Moneta Imperial College \& Oxford CERN

CERN Academic Training Course
Nov 2016

Least squares best fit
What is σ ?
Resume of straight line
Correlated errors
Goodness of fit with χ^{2}
Number of Degrees of Freedom
Other G of F methods
Errors of first and second kind
Combinations
THE paradox

Least Squares Straight Line Fitting

1) Does it fit straight line?
(Goodness of Fit)
2) What are gradient and intercept?
(Parameter Determination)
Do 2) first
N.B. 1 Can be used for non "a+bx"

$$
\text { e.g. } a+b / x+c / x^{2}
$$

N.B. 2 Least squares is not the only method

If theory and data OK:
$y^{\text {th }} \sim y^{\text {obs }} \rightarrow$ S small Minimise $S \rightarrow$ best line
Value of $S_{\text {min }} \rightarrow$ how good fit is

Which σ should we use?

Which σ ?

Name
Ease of algebra

If $\mathrm{Th}=0.01, \mathrm{Exp}=1$
$S \sim \chi^{2}$?
$S=\left(\hat{a}-a_{1}\right)^{2} / \sigma^{2}+$ $\left(\hat{a}-a_{2}\right)^{2} / \sigma^{2}$

Exptl σ
Neyman
Easier, so this version is used more

Contributes 1 to S

Biassed down because smaller $\mathrm{a}_{\mathrm{i}} \rightarrow$ smaller σ

Theory σ
Pearson

Contributes 98 to S More plausible

More plausible
Biassed up because larger â \rightarrow larger σ
(For $\hat{a} \sim \mathrm{a}_{\mathrm{i}}$, and both much larger than $\sigma_{\mathrm{i}}, 2$ methods are very similar)

Straight Line Fit

$$
S=\sum_{i}\left(\frac{\left(a+b x_{i}\right)-y_{i}}{\sigma_{i}}\right)^{2}
$$

(Fixed σ_{i})
i) "Draw" lots of lines $\Rightarrow s$ for each
ii) Minimise S (w.r.t. \cong a $\underline{\underline{b}}$)

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{1}{2} \frac{\partial s}{\partial a}=\sum_{i} \frac{\left(\frac{b}{a}+b x_{i}-y_{i}\right)}{\sigma_{i}^{2}}=0 \\
\frac{1}{2} \frac{\partial s}{\partial b}=\sum_{i} \frac{\left(a+b x_{i}-y_{i}\right) x_{i}}{\sigma_{i}^{2}}=0
\end{array}\right\} \begin{array}{c}
2 \\
\sin . \\
\text { For } 2 \\
\text { cans } \\
\text { NnNonss } \\
(\underline{a}+\underline{b})
\end{array} \\
& b=\frac{[1][x y]-[x][y]}{[1]\left[x^{2}\right]-[x][x]}=\frac{\langle x y\rangle-\langle x\rangle\langle y\rangle}{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
\end{aligned}
$$

where $[\not]]=\sum \frac{f_{i}}{\sigma_{i}^{2}}$

$$
a\langle f\rangle=[f] /[1]
$$

$$
\langle y\rangle=a+b\langle x\rangle \quad \Rightarrow a
$$

N.B. L.S.B.F. passes through ($<x>,<y>$)

Correlated intercept and gradient?

 2 * Inverse covariance matrix =$\left[\begin{array}{ll}\frac{\partial^{2} S}{\partial \mathrm{a}^{2}} & \frac{\partial^{2} \mathrm{~S}}{\partial \mathrm{a} \partial \mathrm{b}} \\ \frac{\partial^{2} \mathrm{~S}}{\partial \mathrm{a} \partial \mathrm{b}} & \frac{\partial^{2} \mathrm{~S}}{\partial \mathrm{~b}^{2}}\end{array}\right]=\left[\begin{array}{ll}\Sigma 1 / \sigma_{\mathrm{i}}^{2} & \Sigma \mathrm{x}_{\mathrm{i}} / \sigma_{\mathrm{i}}^{2} \\ \Sigma \mathrm{x}_{\mathrm{i}} / \sigma_{\mathrm{i}}^{2} & \Sigma \mathrm{x}_{\mathrm{i}}^{2} / \sigma_{\mathrm{i}}^{2}\end{array}\right]$

Invert \rightarrow Covariance matrix
Covariance $\sim-\Sigma x_{i} / \sigma_{i}^{2}=[x]$
If measure intercept at weighted c . of g . of x for data points, cov $=0$
i.e. gradient and intercept there are uncorrelated

So track params are usually specified at centre of track.

Covariance(a,b) ~ -<x>

<x> negative

Start wist 2 uncorrelated

$$
S=\frac{(p-\mu p r)^{2}}{\sigma_{i}^{2}}+\frac{(q-q r)^{2}}{\sigma_{q}{ }^{2}}
$$

$$
\begin{aligned}
& \text { Introduce correlations by } \\
& \left.\begin{array}{l}
p=r \cos \theta-s \sin \theta \\
q=r \sin \theta+s \cos \theta
\end{array}\right\} \\
& \text { Not Roan } \\
& \text { in } x-y \text { SPACE } \\
& \text { Wine } \sigma_{p} \quad \sigma_{q}(+\operatorname{cov}(k, q)=0) \text { in temp of } \sigma_{c}^{2} \sigma_{s}^{2}+ \\
& \Rightarrow S=\frac{1}{\sigma_{r}^{2} \sigma_{s}^{2}-\operatorname{cov}(r, 3)}\left[\sigma_{s}^{2}\left(r-r_{\mu}\right)^{2}+\sigma_{\tau}^{2}\left(s-s_{\mu}\right)^{2} .\right. \\
& -2 \operatorname{cor}(r, s)\left(r-r_{\alpha}\right)\left(s-s_{\mu}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { whee } H^{-1}=\left(\begin{array}{ll}
\sigma_{r}^{2} & c_{1} \\
\text { nov } & \sigma_{s}^{2}
\end{array}\right) \leftarrow \text { Error. }
\end{aligned}
$$

Reduces $\&$ standard formula in absence of corrlus
In general : $S=\sum_{i j} \widetilde{\Delta}_{i} H_{i j} \Delta_{j}$
share $\Delta_{j}=(\text { oboe }- \text { feed })_{j}$

Comments on Least Squares method

1) Need to bin

Beware of too few events/bin
2) Extends to n dimensions
but needs lots of events for n larger than 2 or 3
3) No problem with correlated uncertainties
4) Can calculate $S_{\text {min }}$ "on line" i.e. single pass through data

$$
\Sigma\left(y_{i}-a-b x_{i}\right)^{2} / \sigma^{2}=\left[y_{i}^{2}\right]-b\left[x_{i} y_{i}\right]-a\left[y_{i}\right]
$$

5) For theory linear in params, analytic solution
6) Goodness of Fit

	Individual events $($ e.g. in $\cos \theta)$	$y_{i} \pm \sigma_{i} \vee x_{i}$ (e.g. stars)
1) Need to bin?	Yes	No need
4$) \chi^{2}$ on line	First histogram	Yes

	Moments	Max Like	Least squares
Easy?	Yes, if...	Normalisation, maximisation messy	Minimisation
Efficient?	Not very	Usually best	Sometimes = Max Like
Input	Separate events	Separate events	Histogram
Goodness of fit	Messy	No (unbinned)	Easy
Constraints	No	Yes	Yes
N dimensions	Easy if	Norm, max messier	Easy
Weighted events	Easy	Errors difficult	Easy
Bgd subtraction	Easy	Troublesome	Easy
Inverse covariance matrix	Observed spread, or analytic	$\left\{\frac{-\partial^{2} \ln \mathcal{L}}{\left.\partial p_{\mathrm{i}} \partial p_{j}\right\}}\right\}$	$\left\{\frac{\partial^{2} S}{\left.2 \partial p_{\mathrm{i}} \partial p_{j}\right\}}\right\}$
Main feature	Easy	Best	Goodness of Fit

Goodness of Fit: χ^{2} test

1) Construct S and minimise wrt free parameters
2) Determine $v=$ no. of degrees of freedom

$$
\begin{aligned}
& v=n-p \\
& n=\text { no. of data points } \\
& p=\text { no. of FREE parameters }
\end{aligned}
$$

3) Look up probability that, for v degrees of freedom, $\chi^{2} \geq S_{\text {min }}$

Uses i) Poisson ~ Gaussian if expected number not too small
ii) For $\mathrm{N} \mathrm{y}_{\mathrm{i}}$ distributed as Gaussian $\mathrm{N}(0,1), \Sigma y_{\mathrm{i}}{ }^{2} \sim \chi^{2}$ with $\operatorname{ndf}=\mathrm{N}$

So works ASYMPTOTICALLY. Otherwise use MC for dist of S (or binned \mathfrak{L})

Properties of mathematical χ^{2} distribution:

$$
\begin{aligned}
\overline{\chi^{2}} & =v \\
\sigma^{2}\left(\chi^{2}\right) & =2 v
\end{aligned}
$$

Fig. 2.6

So $\mathrm{S}_{\text {min }}>v+3 \sqrt{2 v}$ is LARGE
e.g. $S_{\text {min }}=2200$ for $v=2000$?

χ^{2} with v degrees of freedom?

$v=$ data - free parameters ?

Why asymptotic (apart from Poisson \rightarrow Gaussian) ?
a) Fit flatish histogram with

$$
\mathrm{y}=\mathrm{N}\left\{1+10^{-6} \cos \left(\mathrm{x}-\mathrm{x}_{0}\right)\right\} \quad \mathrm{x}_{0}=\text { free param }
$$

b) Neutrino oscillations: almost degenerate parameters

$$
\begin{array}{cl}
\mathrm{y} \sim 1-\mathrm{A} \sin ^{2}\left(1.27 \Delta \mathrm{~m}^{2} \mathrm{~L} / \mathrm{E}\right) & 2 \text { parameters } \\
\text { Small } \Delta \mathrm{m}^{2} \\
1-\mathrm{A}\left(1.27 \Delta \mathrm{~m}^{2} \mathrm{~L} / \mathrm{E}\right)^{2} & 1 \text { parameter }
\end{array}
$$

Goodness of Fit

. $\quad \chi^{2} \quad \begin{aligned} & \text { Very general } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { Noeds sensitive to sign of deviation }\end{aligned}$

Run Test

Kolmogorov-Smirnov

Aslan and Zech `Energy Test'
Durham IPPP Stats Conf (2002)

Binned Likelihood (= Baker-Cousins\}

Goodness of Fit: Kolmogorov-Smirnov

Compares data and model cumulative plots (or 2 sets of data) Uses largest discrepancy between dists. Model can be analytic or MC sample

Uses individual data points
Not so sensitive to deviations in tails

(so variants of K-S exist)
Not readily extendible to more dimensions
Distribution-free conversion to p; depends on n
(but not when free parameters involved - needs MC)

Goodness of fit: ‘Energy’ test

Assign +ve charge to data \triangleleft; -ve charge to M.C.h
Calculate 'electrostatic energy E ' of charges
If distributions agree, E ~ 0
If distributions don't overlap, E is positive
Assess significance of magnitude of E by MC
N.B.

1) Works in many dimensions
2) Needs metric for each variable (make variances similar?)
3) $E \sim \sum q_{i} q_{j} f\left(\Delta r=\left|r_{i}-r_{j}\right|\right), \quad f=1 /(\Delta r+\varepsilon)$ or $-\ln (\Delta r+\varepsilon)$

Performance insensitive to choice of small ε
See Aslan and Zech's paper at:
http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml

Binned data and Goodness of Fit using \mathcal{L}-ratio

For histogram, uses Poisson prob $P(n ; \mu)$ for n
 observed events when expect μ.

Construct \mathcal{L}-ratio $=\operatorname{Product}\left\{\mathrm{P}\left(\mathrm{n}_{\mathrm{i}} ; \mu_{\mathrm{i}}\right) / \mathrm{P}\left(\mathrm{n}_{\mathrm{i} ;} ; \mu=\mathrm{n}_{\mathrm{i}}\right)\right\}$ $P\left(n_{i} ; \mu=n_{i}\right)$ is best possible μ for that n_{i} Need denoms because $\mathrm{P}(100 ; 100.0)$ very different from $\mathrm{P}(1 ; 1.0)$
$-2^{*} \mathcal{L}$ ratio $\sim \chi^{2}$ when μ_{i} large and $\mathrm{n}_{\mathrm{i}} \sim \mu_{\mathrm{i}}$
Better than Neyman or Pearson χ^{2} when μ_{i} small
Baker and Cousins, NIM 221 (1984) 437

Wrong Decisions

Error of First Kind

Reject H0 when true
Should happen x\% of tests

Errors of Second Kind
Accept H 0 when something else is true
Frequency depends on
i) How similar other hypotheses are

$$
\begin{aligned}
& \text { e.g. } \mathrm{HO}=\mu \\
& \text { Alternatives are: } \mathrm{e} \quad \pi \mathrm{~K} \quad \mathrm{p} \\
& \text { ii) Relative frequencies: } 10^{-4} 10^{-4} \quad 1 \quad 0.1 \quad 0.1
\end{aligned}
$$

Aim for maximum efficiency \longleftarrow Low error of $1^{\text {st }}$ kind
maximum purity \longleftarrow Low error of $2^{\text {nd }}$ kind
As χ^{2} cut tightens, efficiency \uparrow and purity \downarrow
Choose compromise

How serious are errors of $1^{\text {st }}$ and $2^{\text {nd }}$ kind?

1) Result of experiment
e.g Is spin of resonance $=2$?

Get answer WRONG
Where to set cut?
Small cut \Rightarrow Reject when correct
Large cut \Rightarrow Never reject anything
Depends on nature of H0 e.g.
Does answer agree with previous expt?
Is expt consistent with special relativity?
2) Class selector e.g. b-quark / galaxy type / γ-induced cosmic shower Error of $1^{\text {st }}$ kind: Loss of efficiency Error of $2^{\text {nd }}$ kind: More background
Usually easier to allow for $1^{\text {st }}$ than for $2^{\text {nd }}$
3) Track finding

Combining: Uncorrelated exptl results
Simple Example of Minimising S

Measurements $\left.\begin{array}{c}a_{1} \pm \sigma_{i} \\ a_{2} \pm \sigma_{2} \\ \vdots \\ a_{i} \in \sigma_{i}\end{array}\right\}$
Best value
$\hat{a} \neq \sigma$
Construct

$$
S=\sum\left(\frac{\hat{e}-a_{i}}{\sigma_{i}}\right)^{2}
$$

Minimise S
w.r.t. \hat{a}

$$
\frac{1}{2} \frac{\partial S}{\partial \hat{a}}=\sum \frac{\hat{\alpha}-a_{i}}{\sigma_{i}^{2}}=0
$$

$$
\hat{a} \sum \frac{1}{\sigma_{i}^{2}}=\sum \frac{a_{i}}{\sigma_{i}^{2}}
$$

$\#$
So $\hat{a}=\sum w_{i} a_{i} / \sum w_{i}$, where $w_{i}=1 / \sigma_{i}^{2}$
Error on \hat{a} given by

$$
\sigma=\left(\frac{1}{2} \frac{\partial^{2} S}{\partial \hat{a}^{2}}\right)^{-1 / 2}
$$

$$
\frac{\partial^{2} s}{\partial \hat{a}^{2}}=2 \sum{\frac{1}{\sigma_{1}^{2}}}^{2} \quad \begin{array}{ll}
\text { in PARABOLIC AlI } \\
\text { EQUIV To } \\
& S \rightarrow S_{\text {min }}^{2}+1
\end{array}
$$

$$
\frac{1}{2} \frac{\partial^{2} S}{\partial k_{i}^{2} h_{j}}=\underset{\text { MATRES }}{\text { MATRIX }}
$$

N.B. Better to combine data rather than results

$$
\therefore \frac{1}{\sigma^{2}}=\sum \frac{1}{\sigma_{i}^{2}}
$$

$$
4
$$

Many params

Difference between weighted and simple averaging

Isolated island with conservative inhabitants
How many married people ?

Number of married men $=100 \pm 5 \mathrm{~K}$
Number of married women $=80 \pm 30 \mathrm{~K}$

GENERAL POINT: Adding (uncontroversial) theoretical input can improve precision of answer
Compare "kinematic fitting"

BLUE

Best Linear Unbiassed Estimate

Combine several possibly correlated estimates of same quantity e.g. $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
Covariance matrix $\left[\begin{array}{lll}\sigma_{1}{ }^{2} & \operatorname{cov}_{12} & \operatorname{cov}_{13} \\ \operatorname{cov}_{12} & \sigma_{2}{ }^{2} & \operatorname{cov}_{23} 3 \\ \operatorname{cov}_{13} & \operatorname{cov}_{23} & \sigma_{3}{ }^{2}\end{array}\right]$

Positive correlation

Negative correlation

$$
\operatorname{cov}_{i j}=\rho_{i j} \sigma_{i} \sigma_{j} \text { with }-1 \leq \rho \leq 1
$$

Lyons, Gibault + Clifford NIM A270 (1988) 42
$\mathrm{v}_{\text {best }}=\mathrm{w}_{1} \mathrm{v}_{1}+\mathrm{w}_{2} \mathrm{v}_{2}+\mathrm{w}_{3} \mathrm{v}_{3}$

Linear

with $w_{1}+w_{2}+w_{3}=1$
Unbiassed to give $\sigma_{\text {best }}=\min \left(w r t w_{1}, w_{2}, w_{3}\right) \quad$ Best
For uncorrelated case, $w_{i} \sim 1 / \sigma_{i}^{2}$
For correlated pair of measurements with $\sigma_{1}<\sigma_{2}$

$$
v_{\text {best }}=\alpha v_{1}+\beta v_{2} \quad \beta=1-\alpha
$$

$\beta=0$ for $\rho=\sigma_{1} / \sigma_{2}$
$\beta<0$ for $\rho>\sigma_{1} / \sigma_{2}$ i.e. extrapolation! e.g. $v_{\text {best }}=2 v_{1}-v_{2}$

Extrapolation is sensible:

$$
v \rightarrow
$$

Beware extrapolations because
[b] $\sigma_{\text {best }}$ tends to zero, for $\rho=+1$ or -1

[a] $\mathrm{v}_{\text {best }}$ sensitive to ρ and σ_{1} / σ_{2}
N.B. For different analyses of \sim same data, $\rho \sim 1$, so choose 'better' analysis, rather than combining
N.B. $\sigma_{\text {best }}$ depends on σ_{1}, σ_{2} and ρ, but not on $v_{1}-v_{2}$ e.g. Combining 0 ± 3 and $x \pm 3$ gives $x / 2 \pm 2$

BLUE $=\chi^{2}$

$S\left(v_{\text {best }}\right)=\Sigma\left(v_{i}-v_{\text {best }}\right) E^{-1}\left(v_{j}-v_{\text {best }}\right)$, and minimise S wrt $v_{\text {best }}$ $S_{\text {min }}$ distributed like χ^{2}, so measures Goodness of Fit But BLUE gives weights for each v_{i}
Can be used to see contributions to $\sigma_{\text {best }}$ from each source of uncertainties e.g. statistical and systematics different systematics

For combining two or more possibly correlated measured quantities \{e.g. intercepts and gradients of a straight line), use χ^{2} approach. Alternatively. Valassi has extended BLUE approach

Covariance(a,b) ~ -<x>

<x> negative

Uncertainty on $\Omega_{\text {dark energy }}$

When combining pairs of variables, the uncertainties on the combined parameters can be much smaller than any of the individual uncertainties
e.g. $\Omega_{\text {dark energy }}$

THE PARADOX

Histogram with 100 bins
Fit with 1 parameter
$\mathrm{S}_{\text {min }}: \chi^{2}$ with NDF $=99\left(\right.$ Expected $\left.\chi^{2}=99 \pm 14\right)$
For our data, $S_{\text {min }}\left(p_{0}\right)=90$
Is p_{2} acceptable if $S\left(p_{2}\right)=115$?

1) YES. Very acceptable χ^{2} probability
2) NO. $\quad \sigma_{\mathrm{p}}$ from $\mathrm{S}\left(\mathrm{p}_{0}+\sigma_{\mathrm{p}}\right)=\mathrm{S}_{\text {min }}+1=91$

But $S\left(p_{2}\right)-S\left(p_{0}\right)=25$
So p_{2} is 5σ away from best value

Next time:
 Bayes and Frequentism:
 the return of an old controversy

The ideologies, with examples Upper limits
Feldman and Cousins
Summary

KINEMATIC FITTING
Tests whether observed event is consistent with specified reaction
egg.

$$
\bar{p} p \rightarrow \bar{p} p \pi^{+} \pi^{-} ?
$$

$$
\begin{aligned}
& M_{w} \text {, jet pairings } \\
& e^{+} e^{-} \rightarrow \underset{{\underset{j}{j}, j_{2}}^{\omega^{+}} \omega^{-}}{\rightarrow} \mu \nu
\end{aligned}
$$

$\Lambda \rightarrow \beta^{-}$from prods vertex

$b+\bar{\sigma}^{-}$metered
$\alpha \Delta \rightarrow p \pi^{r}$ from borden vert.

Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis [Goodness of Fit]
2) Can calculate missing quantities [Param detn.]
3) Good to have tracks conserving E-P [Param detn.]
4) Reduces uncertainties
[Param detn.]

Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis [Goodness of Fit] Use $\mathrm{S}_{\text {min }}$ and ndf
2) Can calculate missing quantities [Param detn.]
e.g. Can obtain $|P|$ for short/straight track, neutral beam; $\mathrm{p}_{x}, \mathrm{p}_{y}, \mathrm{p}_{z}$ of outgoing $v, \mathrm{n}, \mathrm{K}^{0}$
3) Good to have tracks conserving E-P [Param detn.]
e.g. identical values for resonance mass from prodn or decay
4) Reduces uncertainties
[Param detn.]
Example of "Including theoretical input reduces uncertainties"

How we perform Kinematic Fitting ?

Observed event: 4 outgoing charged tracks Assumed reaction: $\mathrm{pp} \rightarrow \mathrm{pp} \pi^{+} \pi^{-}$

Measured variables: 4-momenta of each track, $v_{i}^{\text {meas }}$
(i.e. 3-momenta \& assumed mass)

Then test hypothesis:
Observed event = example of assumed reaction
i.e. Can tracks be wiggled "a bit" to do so?

Tested by:

$$
S_{\min }=\sum\left(v_{i} \text { fited }-v_{i}^{\text {meas }}\right)^{2} / \sigma^{2}
$$

where v_{i} fitted conserve 4-momenta
(Σ over 4 components of each track)
N.B. Really need to take correlations into account
i.e. Minimisation subject to constraints (involves Lagrange Multipliers)

‘KINEMATIC’ FITTING

Angles of triangle: $\theta_{1}+\theta_{2}+\theta_{3}=180$

	θ_{1}	θ_{2}	θ_{3}	
Measured	50	60	73 ± 1	Sum $=183$
Fitted	49	59	72	180
$\chi^{2}=(50-49)^{2} / 1^{2}+1+1=3$				
Prob $\left\{\chi^{2}>3\right\}=8.3 \%$				
ALTERNATIVELY:				

Sum $=183 \pm 1.7$, while expect 180
$\operatorname{Prob}\{$ Gaussian 2-tail area beyond $1.73 \sigma\}=8.3 \%$

Toy example of Kinematic Fit

$$
\begin{aligned}
& \bar{p} p \rightarrow \bar{p} p \\
& + \text { constraints: } \\
& \text { 1) Coplanar } \\
& \text { 2) } p_{1} \text { at } \theta_{1} \\
& \text { 3) } \mathrm{f}_{2} \text { at } \theta_{2} \\
& \text { 4) } \theta_{1} \text { at } \theta_{2} \Longleftarrow \text { Non-relativistic equal mass } \\
& \text { e leslie suites: } \theta_{1}+\theta_{2}=\pi / 2 \\
& \begin{array}{lll}
\text { Measwed } & \theta_{1}^{m} \pm \sigma & \theta_{2}^{m} \pm \sigma \\
\text { Fitted } & \theta_{1} & \theta_{2}
\end{array} \\
& \text { Minimise } s\left(\theta_{1}, \theta_{2}\right)=\frac{\left(\theta_{1}-\theta_{1}^{m}\right)^{2}}{\sigma^{2}}+\frac{\left(\theta_{2}-\theta_{2}^{m}\right)^{2}}{\sigma^{2}} \\
& \text { subject to } \quad C\left(\theta_{1}, \theta_{2}\right)=\theta_{1}+\theta_{2}-\pi / 2=0 \\
& \begin{array}{c}
\text { Lagrange: } \frac{\partial s}{\partial \theta_{1}}+\lambda \frac{\partial c}{\partial \theta_{1}}=\frac{\partial s}{\partial \theta_{2}}+\lambda \frac{\partial e}{\partial \theta_{2}}=0 \\
\Rightarrow 3 \text { ecus for } \theta_{1} \theta_{2}
\end{array}
\end{aligned}
$$

Equs simple ts solve because $c\left(\theta_{1}, \theta_{2}\right)$ linear in θ_{1}, θ_{2}

$$
\begin{aligned}
\Rightarrow & \theta_{1}=\theta_{1}^{m}+\frac{1}{2}\left(\pi / 2-\theta_{1}^{m}-\theta_{2}^{m}\right) \\
& \theta_{2}=\theta_{2}^{m}+\frac{1}{2}\left(\pi / 2-\theta_{1}^{m}-\theta_{2}^{m}\right) \\
& \sigma\left(\theta_{1}\right)=\sigma\left(\theta_{2}\right)=\sigma / \sqrt{2}
\end{aligned}
$$

ie. KINEMATIC FIT \rightarrow REDUCED UNCERTAINTIES

